Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Sweeping out on a set of integers

Authors: Martin H. Ellis and Nathaniel A. Friedman
Journal: Proc. Amer. Math. Soc. 72 (1978), 509-512
MSC: Primary 28D05
MathSciNet review: 509244
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (X,\mathcal{B},m)$ be a Lebesgue space, $ m(X) = 1$, and let T be an invertible measurable nonsingular aperiodic transformation of X onto X. If S is a set of r integers, $ r \geqslant 2$, then there exists a set A of measure less than $ {r^{ - 1}}\Sigma _{k = 1}^r{k^{ - 1}}$ such that $ X = { \cup _{n \in S}}{T^n}A$. Thus for every infinite set of integers W there exist sets A of arbitrarily small measure such that $ X = { \cup _{n \cap W}}{T^n}A$.

References [Enhancements On Off] (What's this?)

  • [1] R. V. Chacon and N. A. Friedman, Approximation and invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1965), 286-295. MR 0185068 (32:2538)
  • [2] M. H. Ellis, Sweeping out under a collection of transformations (submitted).
  • [3] M. H. Ellis and N. A. Friedman, Subset generators for nonsingular transformations (submitted).
  • [4] -, Subsequence generators for ergodic group translations, Israel J. Math. (to appear). MR 516247 (80b:28022)
  • [5] N. A. Friedman, Introduction to ergodic theory, Van Nostrand-Reinhold, New York, 1969. MR 0435350 (55:8310)
  • [6] N. A. Friedman and D. S. Ornstein, On partially mixing transformations, Illinois J. Math. 16 (1972), 61-68. MR 0293059 (45:2138)
  • [7] V. A. Rohlin, In general a measure preserving transformation is not mixing, Dokl. Akad. Nauk SSSR 60 (1948), 349-351. MR 0024503 (9:504d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D05

Retrieve articles in all journals with MSC: 28D05

Additional Information

Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society