SKEW-PRODUCTS WITH SIMPLE APPROXIMATIONS

P. N. WHITMAN

Abstract. Conditions are given in order that the cartesian product of two measure-preserving invertible transformations admits an approximation. A class of skew-product transformations is defined and conditions are given for a member of this class to admit a simple approximation.

1. Preliminaries. Let \((X, \mathcal{F}, \mu)\) be a Lebesgue space; that is, a measure space isomorphic to the unit interval with Lebesgue measure. A measure-preserving invertible point transformation of \(X\) is called an automorphism of \((X, \mathcal{F}, \mu)\).

Let \(T: X \to X\) be an automorphism. The induced automorphism \(T_A: A \to A\) where \(A \subset \mathcal{F}\) is defined as follows:

\[T_A x = T^k x, \quad x \in A \]

where \(k\) is the least positive integer such that \(T^k x \in A\).

Let \(Z\) denote the set of positive integers. Let \(f: X \to Z\) be an integrable function. The special automorphism over \(T\) built under the function \(f\) is defined as follows:

Put \(B(k, n) = \{(x, n): x \in X, f(x) = k), n, k \in Z\) and \(1 < n < k\). Put \(X(f) = \bigcup_{k \geq 1} \bigcup_{1 < n < k} B(k, n)\). Identify \(X\) with the set \(\bigcup_{k \geq 1} B(k, 1)\).

We may regard each set \(B(k, n), 1 < n < k,\) as a copy of \(B(k, 1)\). Consequently we may extend the measure \(\mu\) to \(X(f)\) and form a normalised measure \(\mu'\) on \(X(f)\) in the obvious way. We define \(T_f\), the special automorphism over \(T\), by

\[T_f(x, n) = (x, n + 1) \quad \text{if} \quad 1 < n < f(x), \]

\[T_f(x, f(x)) = (Tx, 1). \]

The following definitions are due to Katok and Stepin [4] and Chacon [1] respectively.

Definition 1. An automorphism \(T\) is said to admit a cyclic approximation by periodic transformations of the first kind (a.p.t.I) with speed \(f(n)\), where \(f(n)\) is a sequence of real numbers decreasing to zero, if there exists a sequence of partitions \(\{\xi(n)\}, \xi(n) = \{C_i(n): 1 \leq i \leq q(n)\}\) such that:

1. \(\xi(n) \to \varepsilon\);

2. \(\sum_{i=1}^{q(n)} \mu(TC_i(n) \Delta C_{i+1}(n)) < f(q(n))\), where \(C_{q(n)+1}(n)\) means \(C_1(n)\).

Received by the editors February 8, 1978.

521
DEFINITION 2. An automorphism T admits a simple approximation if there exists a sequence of partitions \{\xi(n)\}, $\xi(n) = \{C_i(n): 1 < i < q(n)\}$ such that:

1. $\xi(n) \rightarrow \varepsilon_X$;
2. $TC_i(n) = C_{i+1}(n), 1 < i < q(n) - 1$.

Let R denote the positive reals.

We also require a slight adaption of Definition 1, as follows.

DEFINITION 3. An automorphism T admits a cyclic a.p.t.I with speed $f(x)$, if T admits a cyclic a.p.t.I with speed $f(n)$, where $f: R \rightarrow R$ and $f(x) \rightarrow 0$ as $x \rightarrow \infty$.

In [6] the following two results were shown.

THEOREM 1. Let $T: X \rightarrow X$ admit a cyclic a.p.t.I with speed $f(n) = o(1/n^2)$ with respect to a sequence of partitions $\xi(n)$, $\xi(n)$ having $q(n)$ elements. Let $A \in \mathcal{F}$ be approximated by sets $A(n) \leq \xi(n)$ with $A(n) \subseteq A$ such that $\mu(A \setminus A(n)) = o(1/q(n))$. Then T_A admits a simple approximation.

THEOREM 2. Let $T: X \rightarrow X$ admit a cyclic a.p.t.I with speed $g(x) = o(1/x^k)$ with respect to a sequence of partitions $\{\xi(n)\}, \xi(n) = \{C_i(n): 1 < i < q(n)\}$. Let $f: X \rightarrow Z$ be integrable with $f(C_i(n)) = k_i(n) \in Z, 1 < i < q(n), n < 1$. Then T_f admits a cyclic a.p.t.I with speed $G(n) = o(1/n^k)$.

2. Approximation of products. Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be Lebesgue spaces. Let S and T be automorphisms of X and Y respectively. Let $\xi(n) = \{C_i(n): 1 < i < p(n)\}$ and $\zeta(n) = \{D_j(n): 1 < j < q(n)\}$ be partitions in X and Y respectively. Define S_n and T_n by

\[S_n C_i(n) = C_{i+1}(n), 1 < i < p(n), \text{ where } C_{p(n)+1}(n) \]
\[T_n D_j(n) = D_{j+1}(n), 1 < j < q(n), \text{ where } D_{q(n)+1}(n) \]

means $C_1(n)$, and

\[T_n D_j(n) = D_{j+1}(n), 1 < j < q(n), \text{ where } D_{q(n)+1}(n) \]

means $D_1(n)$.

The lemma below is easily verified.

LEMMA 1. If $(p(n), q(n)) = 1$, then $S_n \times T_n$ maps the elements of $\xi(n) \times \zeta(n)$ cyclically; that is

\[S_n \times T_n \left(C_i(n) \times D_j(n)\right) = C_{i+1}(n) \times D_{j+1}(n) \]

and $(S_n \times T_n)^k(C_i(n) \times D_j(n)) \neq C_i(n) \times D_j(n)$ for $k < p(n)q(n)$.

The theorem which follows gives the conditions for a product of automorphisms to admit a cyclic a.p.t.I with speed of the form $O(1/n^k)$.

THEOREM 3. Let $S: X \rightarrow X$ admit a cyclic a.p.t.I with speed $f(n)$ $O(1/n^{(r+1)k})$ where $r \geq 2, k \geq 1, r, k \in Z$, with respect to a sequence of partitions $\{\xi(n)\}, \xi(n) = \{C_i(n): 1 < i < p(n)\}$. Let $T: Y \rightarrow Y$ admit a cyclic a.p.t.I with speed $g(n) = O(1/n^{(r+1)k}),$ with respect to a sequence of partitions $\{\zeta(n)\}, \zeta(n) = \{D_j(n): 1 < j < q(n)\}$. Suppose that:
1. \((p(n), q(n)) = 1\);
2. \(p(n) < q(n)\);
3. \(p(n)^r > q(n)\).

Then \(S \times T\) admits a cyclic a.p.t.I with speed \(G(n) = 2\delta/n^k\), for some \(\delta > 0\).

Proof.

\[
\sum_{i=1}^{p(n)} \sum_{j=1}^{q(n)} \mu \times \nu(S \times T(C_i(n) \times D_j(n)) \Delta (C_{i+1}(n) \times D_{j+1}(n)))
\]

\[
< \sum_{i} \sum_{j} \mu(C_i(n)) \nu(TD_j(n) \Delta D_{j+1}(n)) + \nu(D_j(n)) \mu(SC_i(n) \Delta C_{i+1}(n))
\]

\[
< p(n) \mu(C_1(n)) \sum_{j} \nu(TD_j(n) \Delta D_{j+1}(n))
\]

\[
+ q(n) \nu(D_1(n)) \sum_{i} \mu(SC_i(n) \Delta C_{i+1}(n))
\]

\[
< f(p(n)) + g(q(n)).
\]

Since \(f(n) = O(1/n^{r+1})\), \(f(n) < \delta_1/n^{(r+1)k}\) for some \(\delta_1 > 0\). Similarly, \(g(n) < \delta_2/n^{(r+1)k}\) for some \(\delta_2 > 0\). Put \(\delta = \max\{\delta_1, \delta_2\}\) then

\[
f(p(n)) + g(q(n)) < \delta/p(n)^{(r+1)k} + \delta/q(n)^{(r+1)k} < 2\delta/p(n)^k q(n)^k,
\]

since by (3) \(p(n)^r > q(n)\).

Put \(G(n) = 2\delta/n^k\). By Lemma 1 and the above, \(\{\xi(n) \times \xi(n)\}\) is a sequence of partitions with respect to which \(S \times T\) admits a cyclic a.p.t.I with speed \(g(n)\).

In [1] it is shown that if an automorphism admits a cyclic a.p.t.I with speed \(\theta/n, \theta < 1\), then it has simple spectrum. Consequently if \(\delta < \frac{1}{2}\) and \(k > 1\), then \(S \times T\) will have simple spectrum. If \(f(n) = o(1/n^{(r+1)k})\) and \(g(n) = o(1/n^{(r+1)k})\) then it is easily seen that \(S \times T\) will have speed of approximation \(G(n) = 2\delta/n^k\) for any \(\delta > 0\).

If \(S\) and \(T\) and \(S \times T\) all have simple spectrum then \(S\) and \(T\) can have no common spectral type and consequently by a result of Hahn and Parry [3] \(S\) and \(T\) are disjoint.

If \(T\) has simple spectrum then \(T \times T\) has spectral multiplicity strictly greater than one. Consequently Theorem 3 shows that there are restrictions on the types of approximating partitions which exist for \(T\), when the speed of approximation is of the order of \(O(1/n^3)\).

In a similar way to Theorem 3 we can also show the following.

Theorem 4. Let \(S\): \(X \rightarrow X\) admit a cyclic a.p.t.I with speed \(f(n) = a/\log n, a > 0\), with respect to a sequence of partitions \(\{\xi(n)\}, \xi(n)\) having \(p(n)\) elements. Let \(T\): \(Y \rightarrow Y\) admit a cyclic a.p.t.I with speed \(g(n) = b/\log n, b > 0\), with
respect to a sequence of partitions \(\{\xi(n)\} \), \(\xi(n) \) having \(q(n) \) elements. Suppose \(p(n) \) and \(q(n) \) satisfy:

1. \((p(n), q(n)) = 1 \);
2. \(p(n) < q(n) \);
3. \(\log q(n) < k \log p(n) \).

Then \(S \times T \) admits a cyclic a.p.t.I with speed \(g(n) = (k + 1)(a + b)/\log n \).

3. Skew-products with simple approximations. The class of skew-products we shall consider were discussed by Newton in [5] where formulae were given for calculating their entropy. Goodson has considered skew-products of a different type in [2]. He has given conditions for finite skew-products to admit a simple approximation.

Let \(S \) and \(T \) be automorphisms of \(X \) and \(Y \) respectively. Let \(f: X \to Z \) be integrable. The skew-products considered below are of the form

\[
\psi(x, y) = (Sx, T^{f(x)}y), \quad x \in X, y \in Y.
\]

Let \(\eta \) be the measure which assigns measure 1 to each point of \(Z \). Let \(V \) be the subset of \(X \times Y \times Z \) defined by \((x, y, i) \in V \) if \(i < f(x) \). So that \(V = V' \times Y \) where \(V' \) is the subset of \(X \times Z \) defined by \((x, i) \in V' \) if \(i < f(x) \). It is easily seen that

\[
\mu \times \nu \times \eta(V) = \mu \times \eta(V') = \int f(x) d\mu.
\]

We can consider \(V \) as a Lebesgue space with normalised measure \(\mu' \) defined by

\[
\mu'(A) = \mu \times \nu \times \eta(A) \cdot \left(\int f(x) d\mu \right)^{-1},
\]

where \(A \subset V \).

Define an automorphism \(\phi \) on \(V \) by

\[
\phi(x, y, i) = (x, Ty, i + 1) \quad \text{if } i < f(x),
\]

\[
= (Sx, Ty, 1) \quad \text{if } i = f(x).
\]

Then \(\phi = S_f \times T \). Furthermore it is clear that \(\psi \) is the automorphism induced by \(\phi \) on the set \(X \times Y \times \{1\} \).

Definition 4. Let \(\xi \) be a partition in \(X \) such that every element of \(\xi \) is contained in exactly one of the sets \(B(k, 1) \), defined in the first section, for some \(k \). Order the sets \(B(k, n), k \geq 1, 1 \leq n < k \), lexicographically. Then \(\xi' \) is the partition in \(X(f) \) consisting of the elements \(C \in \xi \), together with for each \(C \in \xi \), where \(C \subset B(k, 1) \), a copy of \(C \) in each of the sets \(B(k, n), 1 \leq n < k \). The ordering on \(\xi' \) is that inherited from the sets \(B(k, n) \).

We now give conditions in order that \(\psi \) should admit a simple approximation.

Theorem 5. Let \(S: X \to X \) admit a cyclic a.p.t.I with speed \(h(x) = O(1/x^{3(r+1)}) \), \(r \geq 2 \), \(r \in \mathbb{Z} \), with respect to a sequence of partitions \(\{\xi(n)\} \),
$\xi(n) = \{ C_i(n): 1 < i < s(n)\}$. Let $f: X \to Z$ be integrable with $f(C_i(n)) = k_i(n), 1 < i < s(n), n > 1$, and suppose that $\xi^f(n)$ has $p(n)$ elements. Let $T: Y \to Y$ admit a cyclic a.p.t.I with speed $g(n) = O(1/n^{3(r+1)})$ with respect to a sequence of partitions $\{\xi(n)\}, \xi(n) = \{ D_j(n): 1 < j < q(n)\}$. Suppose that:

1. $(p(n), q(n)) = 1$;
2. $p(n) < q(n)$;
3. $p(n)q(n) > q(n)$;
4. $s(n)^{r+1} \mu(X \setminus \bigcup_{i=1}^{s(n)} C_i(n)) \to 0$ as $n \to \infty$;
5. $q(n)^2 \mu(Y \setminus \bigcup_{j=1}^{q(n)} D_j(n)) \to 0$ as $n \to \infty$.

Then $\psi(x, y) = \psi_x y$ admits a simple approximation.

Proof. By Theorem 2, S_f admits a cyclic a.p.t.I with speed $H(n) = O(1/n^{3(r+1)})$, with respect to the sequence of partitions $\xi^f(n)$.

By the remarks following Theorem 3, ϕ admits a cyclic a.p.t.I with speed $G(n) = O(1/n^2)$ with respect to the sequence of partitions $\{\xi^f(n) \times \xi(n)\}$. Now

$$p(n)q(n) \mu \left[X \times Y \times \{1\} \setminus \sum_{i=1}^{s(n)} \sum_{j=1}^{q(n)} C_i(n) \times D_j(n) \times \{1\} \right]$$

$$< p(n)q(n) \mu \left[X \setminus \sum_{i=1}^{s(n)} C_i(n) \right] + p(n)q(n) \nu \left[Y \setminus \sum_{j=1}^{q(n)} D_j(n) \right]$$

$$< p(n)^{r+1} \mu \left[X \setminus \bigcup_{i=1}^{s(n)} C_i(n) \right] q(n^2) \nu \left[Y \setminus \bigcup_{j=1}^{q(n)} D_j(n) \right] \to 0 \text{ as } n \to \infty,$$

since $p(n) < s(n). (1 + 2f d\mu)$ for n sufficiently large.

Hence $\phi_{x \times y \times \{1\}}$ admits a simple approximation by Theorem 1, which completes the proof.

It is fairly easy to manufacture examples of automorphisms S and T which satisfy the conditions of Theorem 5 by the stacking method. Using methods similar to those in [4], we can use continued-fraction theory to provide rotations of the unit interval, S and T, which satisfy the conditions of Theorem 3. As a consequence of this, it is possible to give examples of skew-products, of the type discussed above, with interval exchange transformations in the base, and rotations in the fibres, which have simple spectrum, without using Theorem 5.

Chacon [1] has generalised the idea of cyclic a.p.t.I to that of approximation with multiplicity N. We remark that all the results shown above have straightforward generalisations to the 'multiplicity N situation'. We then have the following generalisation of Theorem 5.

THEOREM 6. Let S, f and T be as in Theorem 5. Suppose that:

1. $g.c.d. (p(n), q(n)) = N$;
2. $p(n) < q(n)$;
3. \(p(n)^r > q(n) \);
4. \(s(n)^{r+1} \mu(X \setminus \bigcup_{n=1}^{s(n)} C_n) \to 0 \text{ as } n \to \infty \);
5. \(q(n)^{\nu} \nu(Y \setminus \bigcup_{n=1}^{q(n)} D_n) \to 0 \text{ as } n \to \infty \).

Then \(\psi(x, y) = (Sx, T^{f(x)}y) \) admits a simple approximation with multiplicity \(N \).

BIBLIOGRAPHY

University of the Witwatersrand, Jan Smuts Avenue, Johannesburg, South Africa