Skew-products with simple approximations

Author:
P. N. Whitman

Journal:
Proc. Amer. Math. Soc. **72** (1978), 521-526

MSC:
Primary 28D05

MathSciNet review:
509247

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions are given in order that the cartesian product of two measure-preserving invertible transformations admits an approximation. A class of skew-product transformations is defined and conditions are given for a member of this class to admit a simple approximation.

**[1]**R. V. Chacon,*Approximation and spectral multiplicity*, Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970) Springer, Berlin, 1970, pp. 18–27. MR**0271303****[2]**G. R. Goodson,*Skew products with simple spectrum*, J. London Math. Soc. (2)**10**(1975), no. 4, 441–446. MR**0379798****[3]**Frank Hahn and William Parry,*Some characteristic properties of dynamical systems with quasi-discrete spectra*, Math. Systems Theory**2**(1968), 179–190. MR**0230877****[4]**A. B. Katok and A. M. Stepin,*Approximations in ergodic theory*, Uspehi Mat. Nauk**22**(1967), no. 5 (137), 81–106 (Russian). MR**0219697****[5]**D. Newton,*On the entropy of certain classes of skew-product transformations*, Proc. Amer. Math. Soc.**21**(1969), 722–726. MR**0248329**, 10.1090/S0002-9939-1969-0248329-7**[6]**P. N. Whitman,*Approximation of induced automorphisms and special automorphisms*, Proc. Amer. Math. Soc.**70**(1978), no. 2, 139–145. MR**0486429**, 10.1090/S0002-9939-1978-0486429-2

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28D05

Retrieve articles in all journals with MSC: 28D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0509247-5

Article copyright:
© Copyright 1978
American Mathematical Society