ON L^1-CONVERGENCE OF FOURIER SERIES
WITH QUASI-MONOTONE COEFFICIENTS

J. W. GARRETT, C. S. REES AND Č. V. STANOJEVIĆ

Abstract. For the class of Fourier series with quasi-monotone coefficients, it is proved that $\|s_n - a_n\| = o(1)$, $n \to \infty$, if and only if $a_n \lg n = o(1)$, $n \to \infty$. This generalizes a theorem for monotone coefficients and provides a new proof for a result due to Telyakovskii and Fomin.

The problem of L^1-convergence of the Fourier cosine series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

has been settled for various special classes of coefficients. W. H. Young [1] found that

$$a_n \lg n = o(1), \quad n \to \infty$$

is a necessary and sufficient condition for cosine series with convex ($\Delta^2a_n > 0$) coefficients, and A. N. Kolmogorov [2] extended that result to the cosine series with quasi-convex ($\sum_{n=1}^{\infty} n|\Delta^2 a_{n-1}| < \infty$) coefficients. G. A. Fomin [3] showed that for cosine series with monotone coefficients (Y) is a sufficient condition and

$$a_n^2 / a_n \lg n = o(1), \quad n \to \infty$$

(•) is a necessary one. It is easy to see that $\Delta a_n > 0$ and (•) imply (Y). Hence, for cosine series with monotone coefficients such that (•) holds, the condition (Y) is necessary and sufficient for L^1-convergence. J. W. Garrett and Č. V. Stanojević [4] improved that result by showing that for trigonometric series with monotone coefficients such that

$$a_n \lg n = o(1), \quad n \to \infty, \quad \|s_n - f\| = o(1), \quad n \to \infty \iff f \in L^1$$

where $\| \cdot \|$ is the L^1-norm and

$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx).$$

(For sine series an analogous result is due to E. Hille and J. D. Tamarkin [5].) Recently, S. A. Telyakovskii and G. A. Fomin [6] obtained a similar result for Fourier series with quasi-monotone coefficients. A sequence $\{a_n\}$, $a_n \to 0$, $n \to \infty$, is called quasi-monotone if for some $\alpha > 0$, the sequence a_n / n^α is...
monotonically decreasing (for $\alpha = 0$, the sequence is monotone).

The proof given in [6] involves certain results of S. M. Lozinskii [7] concerning summability and interpolation processes. In this paper, we shall show that the Telyakovskii-Fomin theorem follows from a generalization of Theorem 1 in [4]. Our proof depends only on an estimate of $\|s_n - \sigma_n\|$, where σ_n is the Fejér sum.

Theorem. Let

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

be a Fourier series with quasi-monotone coefficients. Then $\|s_n - \sigma_n\| = o(1)$, $n \to \infty$, if and only if $(a_n + b_n) \log n = o(1)$, $n \to \infty$.

Proof. We shall carry out the proof for the cosine series only, the proof for the sine series being essentially the same. For the “if part,” we need the following lemma.

Lemma. Let (a_n) be a quasi-monotone sequence such that $a_n \log n = o(1), n \to \infty$. Then

$$\frac{1}{n} \sum_{k=1}^{n} |\Delta a_k| \log k = o(1), \quad n \to \infty.$$

Proof. From

$$\frac{1}{n} \sum_{k=1}^{n} a_k = \frac{1}{n} \sum_{k=1}^{n-1} \Delta (k a_k) \sum_{j=1}^{k} \frac{1}{j} + a_n \sum_{j=1}^{n} \frac{1}{j},$$

we obtain

$$\frac{1}{n} \sum_{k=1}^{n} k \Delta a_k \sum_{j=1}^{k} \frac{1}{j} = \frac{1}{n} \sum_{k=1}^{n} a_k - a_n \sum_{j=1}^{n} \frac{1}{j} + \frac{1}{n} \sum_{k=1}^{n-1} \Delta a_{k+1} \sum_{j=1}^{k} \frac{1}{j}.$$

The quasi-monotonicity of the (a_n) yields

$$|\Delta a_k| \leq \Delta a_k + 2 \alpha a_k / k$$

for some $\alpha > 0$. Hence,

$$\frac{1}{n} \sum_{k=1}^{n-1} k |\Delta a_k| \sum_{j=1}^{k} \frac{1}{j} \leq -a_n \sum_{j=1}^{n} \frac{1}{j} + \frac{1}{n} \sum_{k=1}^{n} a_k$$

$$+ \frac{2 \alpha}{n} \sum_{k=1}^{n-1} a_k \sum_{j=1}^{k} \frac{1}{j} + \frac{1}{n} \sum_{k=1}^{n-1} \Delta a_{k+1} \sum_{j=1}^{k} \frac{1}{j}.$$

Each term on the right-hand side is $o(1)$ as $n \to \infty$. That completes the proof of the lemma.

Now
\[\|s_n - \sigma_n\| = \frac{1}{n+1} \left\| \sum_{k=1}^{n} k\alpha_k \cos kx \right\| \]

\[\leq \frac{1}{n+1} \left\| \sum_{k=1}^{n-1} k\Delta_k \left[D_k(x) - \frac{1}{2} \right] \right\| \]

\[+ \frac{1}{n+1} \left\| \sum_{k=1}^{n-1} a_{k+1} \left[D_k(x) - \frac{1}{2} \right] \right\| + a_n \left\| D_n(x) - \frac{1}{2} \right\| \]

where \(D_n(x) \) is the Dirichlet kernel. Or, since \(\|D_n(x) - 1/2\| = O(\log n) \), for some \(B > 0 \)

\[B\|s_n - \sigma_n\| \leq \frac{1}{n+1} \sum_{k=1}^{n-1} k|\Delta_k|\log k + \frac{1}{n+1} \sum_{k=1}^{n-1} a_{k+1} \log k + a_n \log n. \]

From the lemma it follows that

\[\|s_n - \sigma_n\| = o(1), \quad n \to \infty. \]

For the "only if" part, notice that

\[\|s_n - \sigma_n\| + \|\sigma_n - f\| = \|s_n - f\| \geq C \sum_{k=1}^{n} \frac{a_{n+k}}{k} \]

where \(C \) is a positive constant. Since \(f \in L^1 \), we have that \(\|\sigma_n - f\| = o(1), \quad n \to \infty. \) Assume that \(\|s_n - \sigma_n\| = o(1), \quad n \to \infty. \) Then

\[\sum_{k=1}^{n} \frac{a_{n+k}}{k} = o(1), \quad n \to \infty. \]

From the fact that the sequence \(\{a_n\} \) is quasi-monotone, we have

\[\sum_{k=1}^{n} \frac{a_{n+k}}{k} > n^\alpha \sum_{k=1}^{n} \frac{1}{k} \frac{a_{n+k}}{(n+k)^{\alpha}} \geq \frac{n^\alpha a_{2n} \log n}{(2n)^{\alpha}} = \left(\frac{1}{2} \right)^\alpha a_{2n} \log n. \]

Finally, \(a_n \log n = o(1), \quad n \to \infty. \)

The proof of the Telyakovskii-Fomin theorem follows from the observation that if \(f \in L^1 \), then \(\|s_n - \sigma_n\| = o(1), \quad n \to \infty \iff \|s_n - f\| = o(1), \quad n \to \infty. \)

REFERENCES

Math tech, Inc., P. O. Box 2392, Princeton, New Jersey 08540

Department of Mathematics, University of New Orleans, New Orleans, Louisiana 70122

Department of Mathematics, University of Missouri-Rolla, Rolla, Missouri 65401