Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spectral estimates and oscillations of singular differential operators


Author: Walter Allegretto
Journal: Proc. Amer. Math. Soc. 73 (1979), 51-56
MSC: Primary 35B05; Secondary 35P05
DOI: https://doi.org/10.1090/S0002-9939-1979-0512057-7
MathSciNet review: 512057
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several estimates are established for the lower spectrum of singular second order elliptic operators. These estimates are obtained by considering the oscillation properties of the operators involved.


References [Enhancements On Off] (What's this?)

  • [1] W. Allegretto, On the equivalence of two types of nonoscillation for elliptic operators, Pacific J. Math. 55 (1974), 319-328. MR 51 #10827. MR 0374628 (51:10827)
  • [2] -, Nonoscillation criteria for elliptic equations in conical domains, Proc. Amer. Math. Soc. 63 (1977), 245-250. MR 0440174 (55:13053)
  • [3] I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, Davey, New York, 1965. MR 32 #2938. MR 0190800 (32:8210)
  • [4] V. Headley and C. A. Swanson, Oscillation criteria for elliptic equations, Pacific J. Math. 27 (1968), 501-506. MR 38 #4797. MR 0236502 (38:4797)
  • [5] K. Kreith, Oscillation theory, Lecture Notes in Math., vol. 324, Springer-Verlag, Berlin, 1973.
  • [6] -, Oscillation theorems for elliptic equations, Proc. Amer. Math. Soc. 15 (1964), 341-344. MR 33 #6098. MR 0197939 (33:6098)
  • [7] K. Kreith and C. Travis, Oscillation criteria for self-adjoint elliptic differential equations, Pacific J. Math. 41 (1972), 743-753. MR 47 #7189. MR 0318642 (47:7189)
  • [8] E. Noussair, Elliptic equations of order 2m, J. Differential Equations 10 (1971), 100-111. MR 43 #6564. MR 0280845 (43:6564)
  • [9] J. Piepenbrink, Nonoscillatory elliptic equations, J. Differential Equations 15 (1974), 541-550. MR 49 #7573. MR 0342829 (49:7573)
  • [10] -, A conjecture of Glazman, J. Differential Equations 24 (1977), 173-177. MR 0454400 (56:12651)
  • [11] M. Protter and H. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR 36 #2935. MR 0219861 (36:2935)
  • [12] C. A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968. MR 0463570 (57:3515)
  • [13] -, Nonoscillation criteria for elliptic equations, Canad. Math. Bull. 12 (1969), 275-280. MR 41 #621. MR 0255961 (41:621)
  • [14] N. Yoshida, Nonoscillation of elliptic equations of second order, Hiroshima Math. J. 4 (1974), 279-284. MR 50 #743. MR 0348245 (50:743)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B05, 35P05

Retrieve articles in all journals with MSC: 35B05, 35P05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0512057-7
Keywords: Elliptic equations, essential spectrum, singular operator, oscillation
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society