Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



That quasinilpotent operators are norm-limits of nilpotent operators revisited

Authors: C. Apostol, C. Foiaş and C. Pearcy
Journal: Proc. Amer. Math. Soc. 73 (1979), 61-64
MSC: Primary 47A65
MathSciNet review: 512059
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new short proof is given that every quasinilpotent operator on a separable, infinite dimensional, complex Hilbert space is a norm-limit of nilpotent operators.

References [Enhancements On Off] (What's this?)

  • [1] C. Apostol, On the norm-closure of nilpotents, Rev. Roumaine Math. Pures Appl. 19 (1974), 277-282. MR 0361875 (50:14317)
  • [2] C. Apostol and D. Voiculescu, On a problem of Halmos, Rev. Roumaine Math. Pures Appl. 19 (1974), 283-284. MR 0338810 (49:3574)
  • [3] A. Brown and C. Pearcy, Compact restrictions of operators, Acta Sci. Math. (Szeged) 32 (1971), 271-282. MR 0305119 (46:4249)
  • [4] C. Foias and C. Pearcy, A model for quasinilpotent operators, Michigan Math. J. 21 (1974), 399-404. MR 0420307 (54:8321)
  • [5] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 0208368 (34:8178)
  • [6] C. Pearcy, Some recent developments in operator theory, CBMS Regional Conf. Ser. in Math., no. 36, Amer. Math. Soc., Providence, R. I., 1978. MR 0487495 (58:7120)
  • [7] D. Voiculescu, A noncommutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), 97-113. MR 0415338 (54:3427)
  • [8] F. Wolf, On the essential spectrum of partial differential boundary problems, Comm. Pure Appl. Math. 12 (1959), 211-228. MR 0107750 (21:6472)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A65

Retrieve articles in all journals with MSC: 47A65

Additional Information

Keywords: Quasinilpotent operator, norm-limit
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society