Fixed point theorems for multivalued approximable mappings

Author:
P. S. Milojević

Journal:
Proc. Amer. Math. Soc. **73** (1979), 65-72

MSC:
Primary 47H10

MathSciNet review:
512060

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce several classes of multivalued approximable mappings and develop the fixed point theory for these mappings acting in a cone. As an important special case we have the theory of *k*-ball-contractive perturbations of strongly pseudo-contractive and accretive mappings.

**[1]**P. M. Fitzpatrick,*On the structure of the set of solutions of equations involving 𝐴-proper mappings*, Trans. Amer. Math. Soc.**189**(1974), 107–131. MR**0336475**, 10.1090/S0002-9947-1974-0336475-5**[2]**P. M. Fitzpatrick and W. V. Petryshyn,*Fixed point theorems and the fixed point index for multivalued mappings in cones*, J. London Math. Soc. (2)**12**(1975/76), no. 1, 75–85. MR**0405180****[3]**Djairo Guedes de Figueiredo,*Fixed-point theorems for nonlinear operators and Galerkin approximations*, J. Differential Equations**3**(1967), 271–281. MR**0206761****[4]**G. M. Gončarov,*On some existence theorems for the solutions of a class of nonlinear operator equations*, Math. Notes**7**(1970), 137-141.**[5]**John David Hamilton,*Noncompact mappings and cones in Banach spaces*, Arch. Rational Mech. Anal.**48**(1972), 153–162. MR**0341205****[6]**M. Lees and M. H. Schultz,*A Leray-Schauder principle for 𝐴-compact mappings and the numerical solution of non-linear two-point boundary value problems*, Numerical Solutions of Nonlinear Differential Equations (Proc. Adv. Sympos., Madison, Wis., 1966) John Wiley & Sons, Inc., New York, 1966, pp. 167–179. MR**0209924****[7]**P. S. Milojević,*Multivalued mappings of A-proper and condensing type and boundary value problems*, Ph.D. Thesis, Rutgers Univ., New Brunswick, N.J. (May 1975).**[8]**P. S. Milojević,*A generalization of Leray-Schauder theorem and surjectivity results for multivalued 𝐴-proper and pseudo 𝐴-proper mappings*, Nonlinear Anal.**1**(1976/77), no. 3, 263–276. MR**0637079****[9]**P. S. Milojević and W. V. Petryshyn,*Continuation theorems and the approximation-solvability of equations involving multivalued 𝐴-proper mappings*, J. Math. Anal. Appl.**60**(1977), no. 3, 658–692. MR**0454760****[10]**W. V. Petryshyn,*Iterative construction of fixed points of contractive type mappings in Banach spaces*, Numerical Analysis of Partial Differential Equations (C.I.M.E. 2 Ciclo, Ispra, 1967) Edizioni Cremonese, Rome, 1968, pp. 307–339. MR**0250435****[11]**W. V. Petryshyn,*On nonlinear 𝑃-compact operators in Banach space with applications to constructive fixed-point theorems*, J. Math. Anal. Appl.**15**(1966), 228–242. MR**0202014****[12]**W. V. Petryshyn,*On the approximation-solvability of equations involving 𝐴-proper and psuedo-𝐴-proper mappings*, Bull. Amer. Math. Soc.**81**(1975), 223–312. MR**0388173**, 10.1090/S0002-9904-1975-13728-1**[13]**W. V. Petryshyn and T. S. Tucker,*On the functional equations involving nonlinear generalized 𝑃-compact operators*, Trans. Amer. Math. Soc.**135**(1969), 343–373. MR**0247539**, 10.1090/S0002-9947-1969-0247539-7**[14]**Felix E. Browder,*Nonlinear operators and nonlinear equations of evolution in Banach spaces*, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R. I., 1976, pp. 1–308. MR**0405188****[15]**P. S. Milojević,*On the solvability and continuation type results for nonlinear equations with applications*. I, Proc. Third Internat. Sympos. Topology and Appl., Belgrade, 1977.**[16]**-,*Fredholm alternatives and surjectivity results for multivalued A-proper and condensing mappings with applications to nonlinear integral and differential equations*(submitted).**[17]**Roger D. Nussbaum,*Periodic solutions of some nonlinear, autonomous functional differential equations. II*, J. Differential Equations**14**(1973), 360–394. MR**0372370**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H10

Retrieve articles in all journals with MSC: 47H10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1979-0512060-7

Keywords:
*A*-compact,
*P*-compact,
approximation solvability

Article copyright:
© Copyright 1979
American Mathematical Society