Fixed point theorems for multivalued approximable mappings

Author:
P. S. Milojević

Journal:
Proc. Amer. Math. Soc. **73** (1979), 65-72

MSC:
Primary 47H10

DOI:
https://doi.org/10.1090/S0002-9939-1979-0512060-7

MathSciNet review:
512060

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce several classes of multivalued approximable mappings and develop the fixed point theory for these mappings acting in a cone. As an important special case we have the theory of *k*-ball-contractive perturbations of strongly pseudo-contractive and accretive mappings.

**[1]**P. M. Fitzpatrick,*On the structure of the set of solutions of equations involving A-proper mappings*, Trans. Amer. Math. Soc.**189**(1974), 107-131. MR**0336475 (49:1249)****[2]**P. M. Fitzpatrick and W. V. Petryshyn,*Fixed point theorems and the fixed point index for multivalued mappings in cones*, J. London Math. Soc. (2)**12**(1975), 75-85. MR**0405180 (53:8974)****[3]**D. G. de Figueiredo,*Fixed point theorems for nonlinear operators and Galerkin approximations*, J. Differential Equations**3**(1967), 271-281. MR**0206761 (34:6578)****[4]**G. M. Gončarov,*On some existence theorems for the solutions of a class of nonlinear operator equations*, Math. Notes**7**(1970), 137-141.**[5]**J. D. Hamilton,*Noncompact mappings and cones in Banach spaces*, Arch. Rational Mech. Anal.**48**(1972), 153-162. MR**0341205 (49:5955)****[6]**M. Lees and M. H. Shultz,*A Leray-Schauder principle for A-compact mappings and the numerical solution of non-linear two-point boundary value problems*, Numerical Solutions of Nonlinear Differential Equations (Proc. Adv. Sympos., Madison, Wis., 1966), Wiley, New York, 1966, pp. 167-179. MR**0209924 (35:819)****[7]**P. S. Milojević,*Multivalued mappings of A-proper and condensing type and boundary value problems*, Ph.D. Thesis, Rutgers Univ., New Brunswick, N.J. (May 1975).**[8]**-,*A generalization of Leray-Schauder theorem and surjectivity results for multivalued A-proper and pseudo A-proper mappings*, Nonlinear Anal., Theory, Methods and Applications**1**(1977), 263-276. MR**0637079 (58:30563)****[9]**P. S. Milojević and W. V. Petryshyn,*Continuation theorems and the approximation-solvability of equations involving multivalued A-proper mappings*, J. Math. Anal. Appl. (3)**60**(1977), 658-692. MR**0454760 (56:13008)****[10]**W. V. Petryshyn,*Iterative construction of fixed points of contractive type mappings in Banach spaces*, Numerical Analysis of Partial Differential Equations (C.I.M.E. 2 Ciclo, Ispra 1967), Edizioni Cremonese, Rome, 1968, pp. 307-339. MR**0250435 (40:3674)****[11]**-,*On nonlinear P-compact operators in Banach spaces with applications to constructive fixed-point theorems*, J. Math. Anal. Appl.**15**(1966), 228-242. MR**0202014 (34:1890)****[12]**-,*On the approximation-solvability of equations involving A-proper and pseudo-A-proper mappings*, Bull. Amer. Math. Soc.**81**(1975), 223-312. MR**0388173 (52:9010)****[13]**W. V. Petryshyn and T. S. Tucker,*On the functional equations involving nonlinear generalized P-compact operators*, Trans. Amer. Math. Soc.**135**(1969), 343-373. MR**0247539 (40:804)****[14]**F. E. Browder,*Nonlinear operators and nonlinear equations of evolution in Banach spaces*, Proc. Sympos. Pure Math., vol. 18, part 2, Amer. Math. Soc., Providence, R.I., 1976. MR**0405188 (53:8982)****[15]**P. S. Milojević,*On the solvability and continuation type results for nonlinear equations with applications*. I, Proc. Third Internat. Sympos. Topology and Appl., Belgrade, 1977.**[16]**-,*Fredholm alternatives and surjectivity results for multivalued A-proper and condensing mappings with applications to nonlinear integral and differential equations*(submitted).**[17]**R. D. Nussbaum,*Periodic solutions of some nonlinear autonomous functional differential equations*. II, J. Differential Equations**14**(1973), 360-394. MR**0372370 (51:8586)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H10

Retrieve articles in all journals with MSC: 47H10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1979-0512060-7

Keywords:
*A*-compact,
*P*-compact,
approximation solvability

Article copyright:
© Copyright 1979
American Mathematical Society