Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

$ {\rm CT}\sb{0}$ is stronger than $ {\rm CT}\sb{0}!$


Author: Vladimir Lifschitz
Journal: Proc. Amer. Math. Soc. 73 (1979), 101-106
MSC: Primary 03F50; Secondary 03F55
MathSciNet review: 512067
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: $ {\text{CT}_0}$! is the result of adding the uniqueness condition to the antecedent of $ {\text{CT}_0}$. $ {\mathbf{HA}} + {\text{CT}_0}$ is shown to be essentially stronger than $ {\mathbf{HA}} + {\text{CT}_0}$!.


References [Enhancements On Off] (What's this?)

  • [1] A. S. Troelstra, Intuitionistic formal systems, Metamathematical investigation of intuitionistic arithmetic and analysis, Springer, Berlin, 1973, pp. 1–96. Lecture Notes in Mathematics, Vol. 344. MR 0444439 (56 #2792)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03F50, 03F55

Retrieve articles in all journals with MSC: 03F50, 03F55


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1979-0512067-X
PII: S 0002-9939(1979)0512067-X
Keywords: Church's thesis, intuitionistic arithmetic, realizability
Article copyright: © Copyright 1979 American Mathematical Society