Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$ {\rm CT}\sb{0}$ is stronger than $ {\rm CT}\sb{0}!$


Author: Vladimir Lifschitz
Journal: Proc. Amer. Math. Soc. 73 (1979), 101-106
MSC: Primary 03F50; Secondary 03F55
DOI: https://doi.org/10.1090/S0002-9939-1979-0512067-X
MathSciNet review: 512067
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: $ {\text{CT}_0}$! is the result of adding the uniqueness condition to the antecedent of $ {\text{CT}_0}$. $ {\mathbf{HA}} + {\text{CT}_0}$ is shown to be essentially stronger than $ {\mathbf{HA}} + {\text{CT}_0}$!.


References [Enhancements On Off] (What's this?)

  • [1] A. S. Troelstra, Intuitionistic formal systems, Metamathematical investigation of intuitionistic arithmetic and analysis, Springer, Berlin, 1973, pp. 1–96. Lecture Notes in Mathematics, Vol. 344. MR 0444439

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03F50, 03F55

Retrieve articles in all journals with MSC: 03F50, 03F55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0512067-X
Keywords: Church's thesis, intuitionistic arithmetic, realizability
Article copyright: © Copyright 1979 American Mathematical Society