Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the existence of maximal and minimal solutions for parabolic partial differential equations


Authors: J. W. Bebernes and K. Schmitt
Journal: Proc. Amer. Math. Soc. 73 (1979), 211-218
MSC: Primary 35K55
DOI: https://doi.org/10.1090/S0002-9939-1979-0516467-3
MathSciNet review: 516467
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of maximal and minimal solutions for initial-boundary value problems and the Cauchy initial value problem associated with $ Lu = f(x,t,u,\nabla u)$ where L is a second order uniformly parabolic differential operator is obtained by constructing maximal and minimal solutions from all possible lower and all possible upper solutions, respectively. This approach allows f to be highly nonlinear, i.e., f locally Hölder continuous with almost quadratic growth in $ \vert\nabla u\vert$.


References [Enhancements On Off] (What's this?)

  • [1] K. Ako, On the Dirichlet problem for quasi-linear elliptic differential equations of second order, J. Math. Soc. Japan 13 (1961), 45-62. MR 0147758 (26:5272)
  • [2] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146. MR 0296498 (45:5558)
  • [3] J. W. Bebernes and K. Schmitt, Invariant sets and the Hukuhara-Kneser property for systems of parabolic partial differential equations, Rocky Mountain J. Math. 7 (1977), 557-568. MR 0600519 (58:29092)
  • [4] H. Fujita and S. Watanabe, On the uniqueness and nonuniqueness of solutions of initial value problems for some quasi-linear parabolic equations, Comm. Rare Appl. Math. 21 (1968), 163-652. MR 0234129 (38:2448)
  • [5] H. B. Keller, Elliptic boundary value problems suggested by nonlinear diffusion processes, Arch. Rational Mech. Anal. 5 (1969), 363-381. MR 0255979 (41:639)
  • [6] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R.I., 1968.
  • [7] W. Mlak, Parabolic differential inequalities and the Chaplighin's method, Ann. Polon. Math. 8 (1960), 139-152. MR 0116135 (22:6930)
  • [8] -, An example of the equation $ {u_t} = {u_{xx}} + f(x,t,u)$ with distinct maximum and minimum solutions of a mixed problem, Ann. Polon. Math. 13 (1963), 101-103. MR 0149119 (26:6613)
  • [9] M. Nagumo, On principally linear elliptic differential equations of second order, Osaka Math. J. 6 (1954), 207-229. MR 0070014 (16:1116a)
  • [10] C. V. Pao, Successive approximations of some nonlinear initial-boundary value problems, SIAM J. Math. Anal. 5 (1974), 91-102. MR 0339507 (49:4265)
  • [11] -, Positive solutions of a nonlinear boundary value problem of parabolic type, J. Differential Equations 22 (1976), 145-163. MR 0422876 (54:10862)
  • [12] G. Prodi, Teoremi di esistenza per equazioni alle derivate parziali non lineari di tipo parabolico, Rend. Ist. Lombardo 86 (1953), 3-47. MR 0064287 (16:259c)
  • [13] J. P. Puel, Existence comportement à l'infini et stabilité dans certaines problè mes quasilinéeares elliptiques et paraboliques d'ordre 2, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 89-119. MR 0399654 (53:3497)
  • [14] R. Redheffer and W. Walter, Counterexamples for parabolic differential equations, Math. Z. 153 (1977), 229-236. MR 0433036 (55:6015)
  • [15] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. J. Math. 211 (1972), 979-1000. MR 0299921 (45:8969)
  • [16] K. Schmitt, Boundary value problems for quasilinear second order elliptic equations, Nonlinear Anal. 2 (1978), 263-309. MR 512661 (80b:35064)
  • [17] F. Tomi, Über semilineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. 111 (1969), 350-366. MR 0279428 (43:5150)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35K55

Retrieve articles in all journals with MSC: 35K55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0516467-3
Keywords: Maximal solutions, parabolic partial differential equations, lower solutions, nonuniqueness
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society