COMPACTIFICATION OF A CONVERGENCE SPACE

VINODKUMAR

ABSTRACT. A characterization for the class of convergence spaces having the largest Hausdorff compactification is given, and regularity and \(\lambda \)-Hausdorffness of modified Richardson compactification are discussed.

Introduction. A convergence space, though a generalisation of a topological space, may behave quite differently from a topological space, e.g. unlike a Hausdorff topological space every Hausdorff convergence space has a Hausdorff compactification which, of course, need not be the largest one [6]. The question when a Hausdorff convergence space has the largest Hausdorff compactification seems to have considerable importance. In [4] and [5], necessary and sufficient conditions for a Hausdorff convergence space \((X, q_X)\) to have the largest Hausdorff compactification are found; it is observed in [8] that the proof of the necessity part is not sound and shown that the largest Hausdorff compactification of \((X, q_X)\), whenever it exists, is given by the modified Richardson compactification \((X^*, q_{X^*})\); using this we find the largest class of Hausdorff convergence spaces having the largest Hausdorff compactification. We also discuss when \((X^*, q_{X^*})\) is regular for a regular Hausdorff convergence space \((X, q_X)\), and when for a topological Tychonoff space \((X, q_X), (X^*, q_{X^*})\) and \((\lambda X^*, q_{\lambda X^*})\), the topological modification of \((X^*, q_{X^*})\) [7], are homeomorphic to \(\beta X\), the topological Stone-Cech compactification of \((X, q_X)\).

Definitions and notations. For definitions, not given here, the reader is asked to refer to [2] and [7]. We shall follow the notations of [8]. For a set \(X\), \(FX\) denotes the set of all filters on \(X\) and \(PX\) the set of all subsets of \(X\). Let u.f. denote ultrafilter. For \(x \in X\), \(x = \{ A \subset X| x \in A \}\) is the principal filter containing \(x\). A convergence structure (c.s.) on \(X\) is a function \(q_X\) from \(FX\) to \(PX\) satisfying the following conditions:

1. for \(x \in X\), \(x \in q_X(x)\);
2. for \(\varphi, \psi \in FX\), if \(\varphi \subset \psi\), then \(q_X(\varphi) \subset q_X(\psi)\);
3. if \(x \in q_X(\varphi)\), then \(x \in q_X(\varphi \cap x)\).

The pair \((X, q_X)\) is called a convergence space. If \(x \in q_X(\varphi)\), we say that \(\varphi\) is
convergent (cgt) and converges to x and \(x = \lim \varphi \). If \(q_x(\varphi) \) is empty, \(\varphi \) is called nonconvergent (noncgt). For \(A \subseteq X \), \(A \) is called open if every \(\varphi \in FX \) and converging to \(x \in A \) contains \(A \); \(A \) is called closed if \(X - A \) is open; \(A \) is called almost compact if every u.f. containing \(A \) is cgt; closure of \(A \) to be denoted by

\[
\text{cl}(A, q_x) = \{ x \in X | x \in q_x(\varphi) \text{ for } \varphi \in FX \text{ and } A \subseteq \varphi \}.
\]

For \(\varphi \in FX \), \(\text{cl}(\varphi, q_x) \) (in short \(\text{cl} \varphi \) when there is no loss of clarity) is the filter generated by \(\{ \text{cl}(A, q_x) | A \subseteq \varphi \} \). Let \(\varphi, \psi \in FX \), then \(\varphi \) and \(\psi \) are called 0-distinct if there exist \(A \subseteq \varphi \) and \(B \subseteq \psi \) such that \(A \) and \(B \) are open and \(A \cap B = \emptyset \).

A convergence space is called (a) \(\lambda \)-Hausdorff if \((\lambda X, q_X)\) is Hausdorff (b) essentially compact if it has only finitely many noncgt u.f.'s (c) almost locally compact if every cgt filter contains an almost compact set. Let \(f : X \to Y \) be a function. For \(\varphi \in FX \), \(f_{\varphi} \) is the filter \(\{ B \subseteq Y | f^{-1}B \subseteq \varphi \} \). Henceforward the word “space” is used to mean a Hausdorff convergence space. We shall not distinguish between equivalent sets and also between homeomorphic spaces. A compactification of a space \((X, q_X)\) will mean a Hausdorff compactification and will be denoted by a triple \((X^1, q_{X^1}, 1_X)\), where \((X^1, q_{X^1})\) is a compact space and \(1_X: (X, q_X) \to (X^1, q_{X^1})\) an embedding. An embedding will be treated as an inclusion function. If \((X^1, q_{X^1}, 1_X)\) and \((X^2, q_{X^2}, 2_X)\) are two compactifications of \((X, q_X)\), then we say that \((X^1, q_{X^1}, 1_X) \supseteq (X^2, q_{X^2}, 2_X)\) if there exists a continuous map \(f: (X^1, q_{X^1}) \to (X^2, q_{X^2})\) such that \(f \circ 1_X = 2_X \). Call a compactification \((X^1, q_{X^1}, 1_X)\) of \((X, q_X)\) universal if given a compact space \((Y, q_Y)\) and a continuous map \(f: (X, q_X) \to (Y, q_Y) \), there exists a continuous map \(g: (X^1, q_{X^1}) \to (Y, q_Y) \) such that \(g \circ 1_X = f \). If \((X, q_X)\) is a topological Tychonoff space, then \(\beta X \) will denote its topological Stone-Čech compactification.

\(H\text{-Conv} \) denotes the category of spaces and continuous maps. \(CH\text{-Conv}, EH\text{-Conv} \) and \(ALH\text{-Conv} \) denote the subcategories of \(H\text{-Conv} \) consisting of compact spaces, essentially compact spaces and almost locally compact spaces respectively. A full subcategory \(\mathcal{B} \) of a full subcategory \(\mathcal{C} \) of \(H\text{-Conv} \) is called embedding epireflective in \(\mathcal{C} \) if \(\mathcal{B} \) is epireflective in \(\mathcal{C} \) and each reflection map is a dense embedding.

For a space \((X, q_X)\) and \(A \subseteq X \), define \(\hat{A} \) and \(A^* \) as \(\hat{A} = \{ \varphi \in FX | A \subseteq \varphi \) and \(\varphi \) is a noncgt u.f.\) and \(A^* = A \cup \hat{A} \). For \(\varphi \in FX \), \(\varphi' \) is the filter \(\{ K \subseteq X^* | K \cap X \in \varphi \} \) on \(X^* \) and \(\varphi^* \) the filter generated by \(\{ A^* | A \subseteq \varphi \} \) on \(X^* \). If \(\varphi \in X^* \), then \(\varphi^0 \) is the filter generated by \(\{ A \cup (\varphi) | A \subseteq \varphi \} \) on \(X^* \). For \(\phi \in FX^* \), \(\phi_0 \) is the filter \(\{ A | A^* \subseteq \phi \} \) on \(X \) and \(\phi_0 \) is the set \(\{ K \subseteq X | K \subseteq \phi \} \).

In [6], for a space \((X, q_X)\), a c.s. \(q_{X^*}^* \) is defined on \(X^* \) as follows. Let \(\phi \in FX^* \). For \(x \in X, x \in q_{X^*}^*(\phi) \) iff \(x \in q_X(\phi^*) \), and for \(\varphi \in X^* \), \(\varphi \in q_{X^*}^*(\phi) \) iff \(\varphi^* \subseteq \phi \). Then \((X^*, q_{X^*}^*, \cdot_X^*), \) where \(\cdot_X^* \) is inclusion from \(X \) to \(X^* \), becomes the Richardson compactification of \((X, q_X)\). Another c.s. \(q_{X^*} \) is defined on \(X^* \).
in [8] as follows. Let \(\phi \in FX^* \). For \(x \in X \), \(x \in q_{X^*}(\phi) \) iff \(x \in q_X(\phi_*) \), and for \(\varphi \in \hat{X} \), \(\varphi \in q_{X^*}(\phi) \) iff there exists an u.f. \(\Psi \) on \(X^* \) such that \(\varphi^* \subset \Psi \) and \(\phi \cap \Psi \subset \phi \). Following [8] we shall refer to \((X^*, q_{X^*}, \cdot^*)\), where \(\cdot^* \) is inclusion from \(X \) to \(X^* \), as the modified Richardson compactification of \((X, q_X) \).

For \(\psi \in \hat{X} \), define a c.s. \(q_{X^*}^\psi \) on \(X^* \) as follows. Let \(\phi \in FX^* \). For \(x \in X \), \(x \in q_{X^*}^\phi(\phi) \) iff \(x \in q_X(\phi_*) \); for \(\varphi \in \hat{X} \), if \(\varphi \neq \psi \), then \(\varphi \in q_{X^*}^\phi(\phi) \) iff \(\varphi' \cap \hat{\psi} \subset \phi \), and \(\psi \in q_{X^*}^\phi(\phi) \) iff either \(\varphi' \cap \hat{\psi} \subset \phi \) or there exists an u.f. \(\Psi \) on \(X^* \) such that \(\hat{X} \in \Psi \) and \(\Psi \cap \hat{\psi} \subset \phi \). Let \(\cdot^* \) denote the inclusion from \(X \) to \(X^* \). If \((X, q_X) \) is almost locally compact, then \((X^*, q_{X^*}^\cdot, \cdot^*)\) becomes a compactification of \((X, q_X) \); call \((X^*, q_{X^*}^\cdot, \cdot^*)\) a point-fixed-modified-Richardson compactification of \((X, q_X) \).

Call a compactification \((X^1, q_{X^1}, 1_X)\) of a space \((X, q_X)\) Richardson type (in short, \(R \)-type) if \(|X^1| = |X^*| \) and for \(\phi \in FX^1 \), \(x \in X \), \(x \in q_{X^1}(\phi) \) iff \(x \in q_X(\phi_*) \), and for \(\varphi \in \hat{X} \), \(\varphi \in q_{X^1}(1_X \varphi) \).

1.

1.1 Lemma [5]. If \((X^1, q_{X^1}, 1_X)\) is a largest compactification of a space \((X, q_X)\), then \(X \) is open in \((X^1, q_{X^1})\).

Proof. Let \((X^2, q_{X^2}, s_X)\) be one point compactification of \((X, q_X)\) given in [3]. Then there exists a continuous map

\[
g: (X^1, q_{X^1}) \to (X^2, q_{X^2})
\]

such that \(gx = x \) for \(x \in X \). This implies that \(X = X^1 - g^{-1}(X^2 - X) \) is open in \((X^1, q_{X^1})\).

Let \((Y, q_Y)\) be a regular compact space and \(f: (X, q_X) \to (Y, q_Y) \) a continuous map. Define a function

\[
\bar{f}: (X^*, q_{X^*}) \to (Y, q_Y)
\]

as follows. For \(x \in X \), \(\bar{f}x = fx \) and for \(\varphi \in \hat{X} \), \(\bar{f}\varphi = \lim f\varphi \). It can be seen that for \(\phi \in FX^* \), \(\cl f\phi_* \subset f\phi \). Hence \(\bar{f} \) is continuous. Thus we have proved

1.2 Proposition. Every continuous map \(f: (X, q_X) \to (Y, q_Y) \), where \((Y, q_Y)\) is a regular compact space, has a continuous extension \(\bar{f}: (X^*, q_{X^*}) \to (Y, q_Y) \).

1.3 Proposition. A space \((X, q_X)\) is almost locally compact iff \(X \) is open in \((X^*, q_{X^*})\).

Proof. If \((X, q_X) \in ALH-Conv\), then \(X \) is open in \((X^*, q_{X^*})\) because for every \(\phi \in FX^* \) converging to \(x \in X \), \(\phi = \varphi' \) for some \(\varphi \in FX \). Now suppose that \(\phi \in FX \) converges to \(x \in X \). Since every u.f. on \(X^* \) containing \(\varphi^* \) converges to \(x \), \(X \in q^* \). Hence there exists \(A \in \varphi \) such that \(A^* \subset X \) implying that \(A \) is almost compact.

1.4 Corollary. If a space is almost locally compact, then it is open in each of its \(R \)-type compactifications.
1.5 Lemma. Let \((X^1, q_{X^1}, 1_X)\) and \((X^2, q_{X^2}, 2_X)\) be two compactifications of \((X, q_X)\) such that \((X^1, q_{X^1}, 1_X) > (X^2, q_{X^2}, 2_X)\). If \((X^2, q_{X^2}, 2_X)\) is R-type, then \(|X^1| = |X^2|\) and \(\text{id}: (X^1, q_{X^1}) \to (X^2, q_{X^2})\) is continuous; if, in addition, \((X, q_X)\) is almost locally compact, then \((X^1, q_{X^1}, 1_X)\) is also R-type.

Proof. Since \((X^1, q_{X^1}, 1_X) > (X^2, q_{X^2}, 2_X)\), there exists a continuous map \(f: (X^1, q_{X^1}) \to (X^2, q_{X^2})\) such that \(f \circ 1_X = 2_X\). Let \(t \in X^1 - X\). There exists an u.f. \(\varphi\) on \(X\) such that \(1_X \varphi\) converges to \(t\). Clearly \(ft = \varphi\), and \(f\) is 1-1 and onto. Hence \(|X^1| = |X^2|\). Also, \(f\) can be treated as the identity function. Now suppose that \((X^1, q_{X^1}) \in \text{ALH-Conv}\). Let \(\phi \in FX^1\) and \(x \in X\). If \(x \in q_{X^1}(\phi)\), then \(x \in q_X(\phi_\ast)\). If \(x \in q_X(\phi_\ast)\), then \(x \in q_{X^1}(1_X \phi_\ast)\) and hence \(x \in q_{X^1}(\phi)\), because \(\phi_\ast = \phi_0\).

1.6 Theorem. If \((X, q_X)\) is almost locally compact, then for every \(\psi \in \hat{X}\), \((X^\ast, q_{X^\ast}, \ast)\) is a maximal compactification of \((X, q_X)\).

Proof. Let \((X^1, q_{X^1}, 1_X)\) be a compactification of \((X, q_X)\) such that \((X^1, q_{X^1}, 1_X) > (X^\ast, q_{X^\ast}, \ast)\). By 1.5, \((X^1, q_{X^1}, 1_X)\) is R-type. Now to prove that \((X^\ast, q_{X^\ast}, \ast) > (X^1, q_{X^1}, 1_X)\), it suffices to prove that for an u.f. \(\phi\) on \(X^\ast\) containing \(\hat{X}, \psi \in q_{X^1}(\phi)\), which is clear in view of 1.5.

1.7 Proposition. For an almost locally compact space \((X, q_X)\), \((X^\ast, q_{X^\ast}) = (X^\ast, q_X^\ast)\) for every \(\psi \in \hat{X}\) iff \((X, q_X)\) is essentially compact.

Proof. Let \((X^\ast, q_{X^\ast}) = (X^\ast, q_X^\ast)\) for every \(\psi \in \hat{X}\). If there exists a free u.f. \(\phi\) on \(X^\ast\) containing \(\hat{X}\), then \(\psi \in q_{X^\ast}(\phi)\) for every \(\psi \in \hat{X}\), which is not true unless \(X\) is singleton, in which case \(\phi\) is not free. Hence \((X, q_X) \in \text{EH-Conv}\). Conversely, if \((X, q_X) \in \text{EH-Conv}\), then no free u.f. on \(X^\ast\) containing \(\hat{X}\) exists and hence \((X^\ast, q_{X^\ast}) = (X^\ast, q_X^\ast)\) for every \(\psi \in \hat{X}\).

1.8 Proposition. If a space \((X, q_X)\) has a largest compactification, then it is essentially compact.

Proof. If \((X, q_X)\) has a largest compactification, then, by Theorem 12 of [8], it is given by the modified Richardson compactification \((X^\ast, q_{X^\ast}, \ast)\). By 1.1 and 1.3, \((X, q_X) \in \text{ALH-Conv}\). Now in view of 1.6, \((X^\ast, q_{X^\ast}) = (X^\ast, q_X^\ast)\) for every \(\psi \in \hat{X}\). Hence \((X, q_X) \in \text{EH-Conv}\) by 1.7.

1.9 Theorem. A space has a universal compactification iff it is essentially compact.

Proof. Apply 1.8 and Proposition 5 of [8].

The following is a categorical version of 1.9.

1.10. Theorem. \(\text{CH-Conv}\) is embedding epireflective in \(\text{EH-Conv}\), and if \(\mathcal{C}\) is the largest full subcategory of \(\text{H-Conv}\) such that \(\text{CH-Conv}\) is embedding epireflective in \(\mathcal{C}\), then \(\mathcal{C} = \text{EH-Conv}\).

Proof. Obvious.
2.

2.1 **Lemma.** For a space (X, q_X) and $A \subset X$,
\[
cl(A, q_{X^*}) = cl(A^*, q_{X^*}) = cl(A, q_X) \cup \hat{A}.
\]

Proof. Obvious.

2.2 **Lemma.** The following are equivalent for a space (X, q_X):
(i) $\varphi^0 = \varphi^*$ and $\varphi = cl(\varphi, q_X)$ for all $\varphi \in \hat{X}$;
(ii) $\varphi^0 = cl(\varphi^0, q_{X^*})$ for all $\varphi \in \hat{X}$.

Proof. (i) implies (ii). Let $A \cup \{\varphi\} \in \varphi^0$ for $\varphi \in \hat{X}$. By (i), there exists $B \in \varphi$ such that $cl(B, q_X) \subset A$ and $B^* \subset A \cup \{\varphi\}$ implying that $cl(B \cup \{\varphi\}, q_{X^*}) \subset A \cup \{\varphi\}$ by 2.1. Hence $\varphi^0 = cl(\varphi^0, q_{X^*})$.

(ii) implies (i). Let $A \in \varphi$ for $\varphi \in \hat{X}$. Since $A \cup \{\varphi\} \in \varphi^0$, there exists $B \in \varphi$ such that
\[
cl(B \cup \{\varphi\}, q_{X^*}) \subset A \cup \{\varphi\}.
\]
This implies that $B^* \subset A \cup \{\varphi\}$ and $cl(B, q_X) \subset A$. Hence $\varphi^0 = \varphi^*$ and $\varphi = cl(\varphi, q_X)$.

2.3 **Theorem.** For a regular space (X, q_X), (X^*, q_{X^*}) is regular iff $\varphi^0 = cl(\varphi^0, q_{X^*})$ for every noncgt u.f. φ on X.

Proof. Suppose that (X^*, q_{X^*}) is regular. Since for $\varphi \in \hat{X}$, φ^0 converges to φ, $cl(\varphi^0, q_{X^*})$ converges to φ. Now it can be seen that $\varphi^0 = cl(\varphi^0, q_{X^*})$. Conversely, to prove that (X^*, q_{X^*}) is regular, let ϕ be a cgt filter on X^*. If ϕ converges to $x \in X$, then in view of 2.1, $cl(\phi^* \subset (cl \phi)_*)$. Hence $cl \phi$ converges to x. If ϕ converges to $\varphi \in \hat{X}$, then because of the given condition and 2.2 either $\varphi^0 \subset \phi$ or $\phi = \hat{\phi}$; in both the cases $cl \phi$ converges to φ.

2.4 **Corollary.** If (X^*, q_{X^*}) is regular, then $(X^*, q_{X^*}) = (X^*, q_X^*)$.

2.5 **Theorem.** If (X, q_X) is topological, then the following are equivalent:
(i) (X^*, q_{X^*}) is topological;
(ii) (X, q_X) is Tychonoff and $(X^*, q_{X^*}) = \beta X$;
(iii) $\varphi^0 = cl(\varphi^0, q_{X^*})$ for every noncgt u.f. φ on X.

Proof. (i) implies (ii). Apply 1.2.

(ii) implies (iii). Apply 2.3.

(iii) implies (i). Apply 2.3 and Corollary 2 of [1].

2.6 **Corollary.** If (X^*, q_{X^*}) is topological, then so is (X^*, q_X^*).

If WX and βX respectively denote the Wallman compactification and Fomin H-closed extension of a topological space (X, q_X), then combining 2.6 and Theorem 3 of [1] we get

2.7 **Theorem.** If (X^*, q_{X^*}) is topological, then (X, q_X) is normal and $\beta X = WX = \beta X$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
2.8 THEOREM. If \((X^*, q_{X^*}) = \beta X, K \subset \beta X - X\) is closed in \(\beta X\) and \(X_1 = X \cup K\) is an extension of \(X\) in \(\beta X\), then \((X_1^*, q_{X_1}) = \beta X_1\).

PROOF. By 2.6 \((X^*, q_{X^*}) = \beta X\) and so \((X_1^*, q_{X_1}) = \beta X_1\) by Theorem 2 of [1]. \(K\) being closed in \(\beta X\), it can be easily verified that \(|\hat{X}| = |\hat{X}_1|\) and \(\alpha = \text{cl}(\alpha, q_{X^*})\) for all \(\alpha \in \hat{X}_1\). Hence \((X_1^*, q_{X_1}) = \beta X_1\).

2.9 PROPOSITION. For a space \((X, q_X)\), the following are true:

(i) \((\lambda X^*, q_{\lambda X^*}) = (\lambda X^*, q_{\lambda X^*})\);

(ii) \((A^*|A \subset X\text{ and } A \text{ open in } X)\) is a base for the topology of \((\lambda X^*, q_{\lambda X^*})\).

PROOF. (i) Since for every u.f. \(\phi\) on \(X^*\),

\[q_{X^*}(\phi) = q_{X^*}(\phi), \quad (\lambda X^*, q_{\lambda X^*}) = (\lambda X^*, q_{\lambda X^*}). \]

(ii) For \(A \subset X\) and \(A\) open in \(X\), \(A^*\) is clearly open in \((\lambda X^*, q_{\lambda X^*})\). For \(K\) open in \((\lambda X^*, q_{\lambda X^*})\), it can be seen that \(K = U \{B^*|B^* \subset K\text{ and } B \text{ open in } X\} \).

2.10 THEOREM. The following are equivalent for a topological space \((X, q_X)\):

(i) \((X, q_X)\) is Tychonoff and \((\lambda X^*, q_{\lambda X^*}) = \beta X\);

(ii) Any two nonct u.f.'s on \((X, q_X)\) are 0-distinct;

(iii) \((X^*, q_{X^*})\) is \(\lambda\)-Hausdorff.

PROOF. (i) implies (ii). Let \(\varphi, \psi \in \hat{X}\). If \(\varphi\) and \(\psi\) are not 0-distinct, then \(\{A^* \cap B^*|A, B \text{ open in } X\text{ and } A \in \varphi, B \in \varphi\}\) will generate a filter on \(X^*\) converging to both \(\varphi\) and \(\psi\) in \((\lambda X^*, q_{\lambda X^*})\).

(ii) implies (iii) and (iii) implies (i) are obvious.

REMARK. Since even for a topological space \((X, q_X)\), \((X^*, q_{X^*})\) is 'highly nontopological' in the sense that not many filters other than u.f.'s are cgt in \((X^*, q_{X^*})\), it is more interesting to know when is \((\lambda X^*, q_{\lambda X^*}) = \beta X\) than to know when is \((X^*, q_{X^*}) = \beta X\).

The author is thankful to Dr. Wagish Shukla and Dr. Arun K. Srivastava for many fruitful discussions. Also, he is grateful to the referee for pointing out an error in the proof of an earlier version of 1.8 and for many helpful suggestions.

REFERENCES

Department of Mathematics, Indian Institute of Technology, Delhi, New Delhi-110029, India

Current address: Department of Mathematics, Maharshi Dayanand University, Rohtak-124001, India