SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A SHORT PROOF OF A VERSION OF ASPLUND'S NORM AVERAGING THEOREM

K. JOHN AND V. ZIZLER

Abstract. A short proof is given of a somewhat weaker version of Asplund's result on averaging smooth and rotund norms in Banach spaces.

In 1967 E. Asplund [1] found a general construction, which, in the case of locally uniformly rotund (LUR) norms, gives

Theorem 1 (Asplund). If a Banach space \(X \) admits an equivalent LUR norm \(\| \cdot \|_1 \) and an equivalent norm \(\| \cdot \|_2 \) whose dual norm is LUR, then \(X \) admits an equivalent LUR norm \(\| \| \) whose dual norm is also LUR.

Recall that an LUR norm is one which satisfies \(\lim_j \| x_j - x \| = 0 \) whenever \(x_j, x \in X \) and \(\lim_j 2(\| x_j \|^2 + \| x \|^2) - \| x + x_j \|^2 = 0 \).

We give here a short proof of the following weaker version of Theorem 1:

Theorem 1' (Asplund). Under the same assumptions as in Theorem 1, \(X \) admits an equivalent norm \(\| \| \) which is LUR and Fréchet differentiable (on \(X \setminus \{0\} \)).

Proof of Theorem 1'. For \(n \geq 3 \) let \(\| f \|_n^* = (\| f \|_1^2 + n^{-1} \| f \|_2^2)^{1/2} \). Each \(\| \cdot \|_n^* \) is clearly an LUR equivalent norm on \(X^* \), dual to some norm \(\| \cdot \|_n \) on \(X \). Furthermore, \(\lim_n \| x \|_n = \| x \|_1 \) uniformly on bounded sets of \(X \). Since each \(\| \cdot \|_n^* \) is LUR, the norm \(\| \cdot \|_n \) is Fréchet differentiable (cf. e.g. [2]). Consider the norm \(\| x \|_n = (\sum_{i=1}^{n} 2^{-i} \| x \|_i^2)^{1/2} \); this is an equivalent norm on \(X \). Since the differentials \((\| \cdot \|_n^2)' \) of \(\| \cdot \|_n^2 \) are uniformly bounded on bounded sets of \(X \), the norm \(\| \cdot \|_n \) is Gâteaux differentiable and the differential \((\| \cdot \|_n^2)' \) is norm-norm continuous (as all \((\| \cdot \|_i^2)' \) are such—see e.g. [2]). Thus \(\| \cdot \|_n \) is Fréchet differentiable. To see that \(\| \cdot \| \) is LUR, suppose \(x_j, x \in X \), and \(\lim_j 2(\| x_j \|^2 + \| x \|^2) - \| x + x_j \|^2 = 0 \). Then the same is true for any \(\| \cdot \|_n \) and since \(\{ x_j \} \) is then necessarily bounded and \(\lim_n \| x \|_n = 0 \).

Received by the editors March 28, 1978.

© 1979 American Mathematical Society

0002-9939/79/0000-0076/$01.50
\[\|x\|_1 \text{ uniformly on bounded sets, we have } \lim_j 2(\|x_j\|_1^2 + \|x\|_1^2) - \|x_j + x\|_1^2 = 0. \] So, by LUR of the norm \(\| \cdot \|_1 \), we have \(\lim_j \|x_j - x\|_1 = 0. \)

Remark. The above argument also works for other properties (like rotundity, uniform rotundity, etc.). In the case where there is exact duality between a differentiability and a rotundity notion (e.g. uniform rotundity and uniform Fréchet differentiability, or rotundity and Gâteaux differentiability in reflexive spaces), our proof gives the original Theorem 1.

REFERENCES

MATHEMATICAL INSTITUTE, CZECHOSLOVAK ACADEMY OF SCIENCES, ŽITNÁ 25, PRAHA, CZECHOSLOVAKIA

DEPARTMENT OF MATHEMATICS, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 18600, PRAHA, CZECHOSLOVAKIA