Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A relaxed Picard iteration process for set-valued operators of the monotone type


Author: J. C. Dunn
Journal: Proc. Amer. Math. Soc. 73 (1979), 319-327
MSC: Primary 47H10; Secondary 65J05
DOI: https://doi.org/10.1090/S0002-9939-1979-0518512-8
MathSciNet review: 518512
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The fixed points $ \bar x$ of set-valued operators, $ T:X \to {2^X}$, satisfying a condition of the monotonicity type on convex subsets X of a Hilbert space are approximated by a relaxation process, $ {x_{n + 1}} = {x_n} + {\omega _n}(T{x_n} - {x_n})$, in which $ \tilde T$ is a single-valued branch of T and the relaxation parameter $ {\omega _n} \in [0,1]$ is made to depend in a certain way on the prior history of the process. If $ \tilde T$ is bounded on bounded subsets of X, then $ \left\Vert {{x_n} - \bar x} \right\Vert$ converges to 0 like $ O({n^{ - 1/2}})$. If $ \tilde T$ is also continuous at $ \bar x$ and if $ \bar x = \tilde T\bar x$, then $ \left\Vert {{x_n} - \bar x} \right\Vert = o({n^{ - 1/2}})$. If $ \tilde T$ satisfies a condition of the Lipschitz type at $ \bar x$, then $ \left\Vert {{x_n} - \bar x} \right\Vert = O({\mu ^{n/2}})$ for some $ \mu \in [0,1)$.


References [Enhancements On Off] (What's this?)

  • [1] J. C. Dunn, Iterative construction of fixed points for multivalued operators of the monotone type, J. Functional Analysis 27 (1978), 38-50. MR 477162 (81f:47056)
  • [2] R. E. Bruck, Jr., The iterative solution of the equation $ y \in x - Tx$ for a monotone operator T in Hilbert space, Bull. Amer. Math. Soc. 79 (1973), 1258-1261. MR 0328692 (48:7034)
  • [3] B. E. Rhoades, Fixed point iterations using infinite matrices. III, in Proc. Conf. on Computing Fixed Points with Applications (Clemson Univ., June 1974), Academic Press, New York (to appear). MR 0519589 (58:24922)
  • [4] R. E. Bruck, A strongly convergent iterative solution of $ 0 \in U(x)$ for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114-126. MR 0361941 (50:14383)
  • [5] E. H. Zarantonello, Solving functional equations by contractive averaging, U. S. Army Mathematics Research Center Technical Report #160, Wisconsin, June 1960.
  • [6] -, The closure of the numerical range contains the spectrum, Bull. Amer. Math. Soc. 70 (1964), 781-787. MR 0173176 (30:3389)
  • [7] -, The closure of the numerical range contains the spectrum, Pacific J. Math. 22 (3) (1967), 575-595. MR 0229079 (37:4657)
  • [8] A. B. Bakusinskii and B. T. Poljak, On the solution of variational inequalities, Soviet Math. Dokl. 15 (6) (1974), 1705-1710. MR 0377619 (51:13790)
  • [9] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228. MR 0217658 (36:747)
  • [10] T. E. Williamson, Jr., Geometric estimation of $ x = Tx = 0$ for monotone-type operator T in Hilbert space, Proc. Amer. Math. Soc. (to appear). MR 728603 (85a:47067)
  • [11] J. C. Dunn, Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals, SIAM J. Control Optimization (to appear). MR 525021 (80d:49025)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10, 65J05

Retrieve articles in all journals with MSC: 47H10, 65J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0518512-8
Keywords: Set-valued Hilbert space operators, fixed points, relaxed Picard iterations, residual-dependent step lengths, continuity conditions and convergence rates
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society