An remainder theorem for an integrodifferential equation with asymptotically periodic solution

Author:
Kenneth B. Hannsgen

Journal:
Proc. Amer. Math. Soc. **73** (1979), 331-337

MSC:
Primary 45D05; Secondary 45J05, 45M05

MathSciNet review:
518514

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a certain integrodifferential equation of Volterra type on , with piecewise linear convolution kernel, it is shown that the solution is , with and and constant; is represented similarly.

**[1]**R. W. Carr and K. B. Hannsgen,*A nonhomogeneous integrodifferential equation in Hilbert space*, SIAM J. Math. Anal. (to appear).**[2]**S. I. Grossman and R. K. Miller,*Nonlinear Volterra integrodifferential systems with 𝐿¹-kernels*, J. Differential Equations**13**(1973), 551–566. MR**0348417****[3]**Kenneth B. Hannsgen,*Indirect abelian theorems and a linear Volterra equation*, Trans. Amer. Math. Soc.**142**(1969), 539–555. MR**0246058**, 10.1090/S0002-9947-1969-0246058-1**[4]**Kenneth B. Hannsgen,*Uniform boundedness in a class of Volterra equations*, SIAM J. Math. Anal.**6**(1975), 689–697. MR**0370107****[5]**G. S. Jordan and Robert L. Wheeler,*On the asymptotic behavior of perturbed Volterra integral equations*, SIAM J. Math. Anal.**5**(1974), 273–277. MR**0342976****[6]**R. K. Miller,*Structure of solutions of unstable linear Volterra integrodifferential equations*, J. Differential Equations**15**(1974), 129–157. MR**0350351****[7]**Daniel F. Shea and Stephen Wainger,*Variants of the Wiener-Lévy theorem, with applications to stability problems for some Volterra integral equations*, Amer. J. Math.**97**(1975), 312–343. MR**0372521**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
45D05,
45J05,
45M05

Retrieve articles in all journals with MSC: 45D05, 45J05, 45M05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1979-0518514-1

Article copyright:
© Copyright 1979
American Mathematical Society