Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Invariant subspaces of von Neumann algebras. II


Author: Costel Peligrad
Journal: Proc. Amer. Math. Soc. 73 (1979), 346-350
MSC: Primary 47D25; Secondary 46L10, 47A15
DOI: https://doi.org/10.1090/S0002-9939-1979-0518517-7
MathSciNet review: 518517
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that every parareductive operator algebra $ A \subset B(H)$ (as defined below) is a von Neumann algebra. For the proof of this result, some new properties of paraclosed operators are obtained. Finally, a sufficient condition that a reductive algebra be a von Neumann algebra is given.


References [Enhancements On Off] (What's this?)

  • [1] E. A. Azoff, Invariant linear manifolds and the selfadjointness of operator algebras, Amer. J. Math. 99 (1977), 121-137. MR 0435886 (55:8837)
  • [2] -, Kaplanski-Hilbert modules and the self-adjointness of operator algebras (preprint).
  • [3] S. R. Caradus, Semiclosed operators, Pacific J. Math. 44 (1973), 75-81. MR 0315494 (47:4043)
  • [4] C. Foiaş, Invariant para-closed subspaces, Indiana Univ. Math. J. 21 (1972), 887-906. MR 0293439 (45:2516)
  • [5] T. B. Hoover, Operator algebra with reducing invariant subspaces, Pacific J. Math. 44 (1973), 173-180. MR 0315477 (47:4026)
  • [6] J. von Neumann, Collected works. III, Pergamon Press, New York, 1961.
  • [7] C. Peligrad, Invariant subspaces of von Neumann algebras. Acta Sci. Math. (Szeged) 37 (1975), 275-279. MR 0394234 (52:15037)
  • [8] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, New York, 1973. MR 0367682 (51:3924)
  • [9] J. T. Schwartz, $ {W^\ast}$-algebras, Gordon and Breach, New York, 1967. MR 0232221 (38:547)
  • [10] S. Strătilă and L. Zsidó, An algebraic reduction theory for $ {W^\ast}$-algebras. II, Rev. Roumaine Math. Pures Appl. 18 (1973), 407-460. MR 0348514 (50:1012)
  • [11] D. Voiculescu, Sure les sous-espaces parafermés invariants d'une algèbre de von Neumann, Bull. Sci. Math. (2) 96 (1972), 161-168. MR 0322526 (48:888)
  • [12] -, Diploma work, Univ. of Bucharest, 1972. (Romanian)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D25, 46L10, 47A15

Retrieve articles in all journals with MSC: 47D25, 46L10, 47A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0518517-7
Keywords: Reductive algebra, parareductive algebra, von Neumann algebra, paraclosed operator
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society