Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Applications of shrinkable covers


Author: J. C. Smith
Journal: Proc. Amer. Math. Soc. 73 (1979), 379-387
MSC: Primary 54D15
DOI: https://doi.org/10.1090/S0002-9939-1979-0518525-6
MathSciNet review: 518525
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An open cover $ \mathcal{G} = \{ {G_\alpha }:\alpha \in A\} $ of a topological space X is shrinkable if there exists a closed cover $ \mathcal{F} = \{ {F_\alpha }:\alpha \in A\} $ of X such that $ {F_\alpha } \subseteq {G_\alpha }$ for each $ \alpha \in A$.

In this paper the author determines conditions necessary for a variety of general covers to be shrinkable. In particular it is shown that the shrinkability of special types of covers provide characterizations for normal and countably paracompact, normal spaces. The types of covers investigated are, weak $ \bar \theta $-covers, weak $ \bar \theta $-covers, point countable covers, $ \delta \theta $-covers and weak $ \overline {\delta \theta } $-covers. Applications of these results are answers of unsolved problems and new results for irreducible spaces.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Alo and H. L. Shapiro, Normal topological spaces, Cambridge Univ. Press, Cambridge, 1974. MR 0390985 (52:11808)
  • [2] C. E. Aull, A generalization of a theorem of Aquaro, Bull. Austral. Math. Soc. 9 (1973), 105-108. MR 0372817 (51:9021)
  • [3] H. R. Bennett, On quasi-developable spaces, General Topology and Appl. 1 (1971), 253-262. MR 0288725 (44:5921)
  • [4] H. R. Bennett and D. J. Lutzer, A note on weak $ \theta $-refinability, General Topology and Appl. 2 (1972), 49-54. MR 0301697 (46:853)
  • [5] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186. MR 0043449 (13:264f)
  • [6] J. Boone, On irreducible spaces, Bull. Austral. Math. Soc. 12 (1975), 143-148. MR 0400162 (53:3997)
  • [7] -, On irreducible spaces. II, Pacific J. Math. 62 (1976), 351-358. MR 0418037 (54:6081)
  • [8] -, A note on $ \delta \theta $-refinable spaces, Set Theoretic Topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975-76), Academic Press, New York, 1977, pp. 73-80.
  • [9] D. K. Burke, A note on R. H. Bing's example G, (Proc. Va. Polytechnic Inst. and State Univ. Top. Conf.) Lecture Notes in Math., vol. 375, Springer-Verlag, New York and Berlin, 1973, pp. 47-52. MR 0375230 (51:11426)
  • [10] U. J. Christian, A note on the relation between Lindelöof and $ {\aleph _1}$-compact spaces, Comment. Math. Prace Mat. 16 (1972), 215-217. MR 0322803 (48:1164)
  • [11] -, Concerning certain minimal cover refinable spaces, Fund. Math. 76 (1972), 213-222. MR 0372818 (51:9022)
  • [12] Y. Katuta, On expandability, Proc. Japan Acad. 49 (1973), 452-455. MR 0341400 (49:6151)
  • [13] -, Expandability and its generalizations, Fund. Math. 87 (1975), 231-250. MR 0377817 (51:13986)
  • [14] E. A. Michael, Point finite and locally finite coverings, Canad. J. Math. 7 (1955), 275-279. MR 0070147 (16:1138c)
  • [15] K. Nagami, Dimension theory, Academic Press, New York and London, 1970. MR 0271918 (42:6799)
  • [16] M. E. Rudin, A normal space X for which $ X \times I$ is not normal, Bull. Amer. Math. Soc. 77 (1971), 246. MR 0270328 (42:5217)
  • [17] J. C. Smith and L. L. Krajewski, Expandability and collectionwise normality, Trans. Amer. Math. Soc. 160 (1971), 437-451. MR 0284966 (44:2190)
  • [18] -, Properties of weak $ \bar \theta $-refinable spaces, Proc. Amer. Math. Soc. 53 (1975), 511-517. MR 0380731 (52:1628)
  • [19] -, A remark on irreducible spaces, Proc. Amer. Math. Soc. 57 (1976), 133-139. MR 0405353 (53:9147)
  • [20] -, A remark on collectionwise normality, Colloq. Math. (to appear).
  • [21] -, On $ \Theta $-expandable spaces, Glasnik Mat. Ser. III 11 (31) (1976), 335-346. MR 0438297 (55:11215)
  • [22] -, New characterizations for collectionwise normal spaces, Glasnik Mat. Ser. III 12 (32) (1977), 327-338. MR 0482659 (58:2717)
  • [23] J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canad. J. Math. 17 (1965), 820-830. MR 0182945 (32:427)
  • [24] -, Point countability and compactness, Proc. Amer. Math. Soc. 55 (1976), 427-431. MR 0400166 (53:4001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D15

Retrieve articles in all journals with MSC: 54D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0518525-6
Keywords: Shrinkable, normal, countably paracompact, $ \theta $-refinable, weakly $ \theta $-refinable, weakly $ \theta $-refinable, point countable cover, $ \delta \theta $-refinable, weak $ \overline {\delta \theta } $-cover, irreducible, closure-preserving, sequential, countable tightness
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society