Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pointwise inversion of the spherical transform on $ L\sp{p}(G/K)$, $ 1\leq p<2$


Authors: Robert J. Stanton and Peter A. Tomas
Journal: Proc. Amer. Math. Soc. 73 (1979), 398-404
MSC: Primary 43A85; Secondary 22E30
DOI: https://doi.org/10.1090/S0002-9939-1979-0518528-1
MathSciNet review: 518528
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The inversion formula for the spherical Fourier transform on a noncompact symmetric space is shown to hold a.e. for $ {L^p}(G/K),1 \leqslant p < 2$.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Clerc and E. M. Stein, $ {L^p}$-multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U. S. A. 71 (1974), 3911-3912. MR 0367561 (51:3803)
  • [2] R. Gangolli, On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math. 93 (1971), 150-165. MR 0289724 (44:6912)
  • [3] Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241-310. MR 0094407 (20:925)
  • [4] -, Spherical functions on a semisimple Lie group. II, Amer. J. Math. 80 (1958), 553-613. MR 0101279 (21:92)
  • [5] -, Discrete series for semisimple Lie groups. II, Acta Math. 116 (1966), 1-111. MR 0219666 (36:2745)
  • [6] S. Helgason, An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann. 165 (1966), 297-308. MR 0223497 (36:6545)
  • [7] -, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1-154. MR 0263988 (41:8587)
  • [8] J. Rosenberg, A quick proof of Harish-Chandra's Plancherel theorem for spherical functions on a semisimple Lie group (preprint).
  • [9] R. J. Stanton and P. A. Tomas, A note on the Kunze-Stein phenomenon, J. Functional Analysis 29 (1978), 151-159. MR 0578902 (58:28278)
  • [10] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., No. 32, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A85, 22E30

Retrieve articles in all journals with MSC: 43A85, 22E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0518528-1
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society