EXTREME POINTS OF SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS

H. SILVERMAN and D. N. TELAGE

Abstract. We determine coefficient bounds, distortion and covering theorems, and the extreme points for various subclasses of close-to-convex functions. All results are sharp.

1. Introduction. Let S denote the class of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ that are analytic and univalent in the unit disk \mathbb{U}. A normalized function f is said to be close-to-convex if there exists a function $g(z) = b_1 z + \cdots$ (Re $b_1 > 0$) (1) starlike with respect to the origin for which

$$\text{Re} \left\{ \frac{zf'}{g'} \right\} > 0 \quad (z \in \mathbb{U}).$$

(2)

It is well known [3] that the close-to-convex functions, denoted by \mathcal{C}, are contained in S.

In this paper we investigate distortion properties, coefficient bounds, and the extreme points of several subclasses of \mathcal{C}. A function f is said to be in \mathcal{C}_1 if there exists a convex function g of the form (1) such that (2) is satisfied. If there exists such a g satisfying

$$\text{Re} \left\{ \left[\frac{zf'}{g'} \right]' \right\} > 0 \quad (z \in \mathbb{U}),$$

then f is said to be in \mathcal{C}_2. If

$$\text{Re} \left\{ \left[z \frac{zf'}{g'} \right]' \left[zg' \right]' \right\} > 0 \quad (z \in \mathbb{U}),$$

then f is said to be in \mathcal{C}_3. In relating these classes to one another, we will rely on the following lemma due to Sakaguchi [4].

Lemma A. Let $F(z) = z + \cdots$ be analytic and $G(z) = b_1 z + \cdots$ be analytic and starlike in \mathbb{U} with Re $b_1 > 0$. If Re $F'/G' > 0$ ($z \in \mathbb{U}$), then Re $F/G > 0$ ($z \in \mathbb{U}$).

Since g convex implies zg' is starlike, an application of Lemma A shows that $\mathcal{C}_3 \subset \mathcal{C}_2$. Reapplying Lemma A we see that $\mathcal{C}_2 \subset \mathcal{C}_1$. Further $\mathcal{C}_1 \subset \mathcal{C}$.
because convex functions are starlike. We thus have the inclusion relations
\(\mathcal{C}_3 \subset \mathcal{C}_2 \subset \mathcal{C}_1 \subset \mathcal{C} \).

Geometrically, a function \(f \) is in the family \(\mathcal{C}_2 \) if \(zf' \) maps each circle \(z = re^{i\theta} \) \((r < 1)\) onto a simple closed curve whose unit tangent vector never drops back on itself more than \(\pi \) radians as \(\theta \) increases. That is, \(f \in \mathcal{C}_2 \) if and only if \(zf' \in \mathcal{C} \). The family \(\mathcal{C}_1 \), while a proper subclass of the close-to-convex functions, is not contained in the family of starlike functions. In fact, there exist functions in \(\mathcal{C}_2 \) that are not starlike. For example, the function
\[
h(z) = \frac{1 - i}{2} \frac{z}{1 - z} - \frac{1 + i}{2} \log(1 - z)
\]
is shown in the next section to be in \(\mathcal{C}_2 \). However for \(\varepsilon \) sufficiently small, \(\Re(zh'(z)/h(z)) < 0 \) when \(z = e^{i\theta}, -\varepsilon < \theta < 0 \).

2. Extreme points of \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \). For a compact family \(\mathcal{F} \), we denote the closed convex hull of \(\mathcal{F} \) by \(\text{cl co} \mathcal{F} \) and the extreme points of \(\text{cl co} \mathcal{F} \) by \(\mathcal{E}(\text{cl co} \mathcal{F}) \).

Theorem 1. Let \(X \) be the torus \(\{(x, y) | |x| = |y| = 1\} \), \(P \) be the set of probability measures on \(X \),
\[
k(z, x, y) = (1 + x) \frac{z}{1 - yz} + xy \log(1 - yz),
\]
where \(z \in \mathbb{D} \) and \(|x| = |y| = 1 \), and let \(\mathcal{F} \) be the set of functions \(f_\mu \) defined by
\[
f_\mu(z) = \int_X k(z, x, y) \, d\mu(x, y), \quad \mu \in \mathcal{P}.
\]
Then
\[
\text{cl co} \mathcal{C}_1 = \mathcal{F}
\]
and
\[
\mathcal{E}(\text{cl co} \mathcal{C}_1) = \{ k(z, x, y) | x \neq -1 \}.
\]

Proof. Our proof will follow along the lines of the proof for \(\mathcal{E}(\text{cl co} \mathcal{C}) \), found in [1]. We first show that \(\text{cl co} \mathcal{C}_1 \subset \mathcal{F} \). If \(f \in \mathcal{C}_1 \), then \(p(z) = zf'(z)/g(z) \) has positive real part in \(\mathbb{D} \) for some convex function \(g \). By Herglotz' theorem, we can express \(p(z) \) as
\[
p(z) = \int_\Gamma \frac{p(0)u + \overline{p(0)}}{u - z} \, d\alpha(u)
\]
for some \(\alpha \) a probability measure on the unit circle \(\Gamma \). In [1] it is shown that we can express \(g(z) \) as
\[
g(z) = \int_\Gamma \frac{g'(0)z}{1 - vz} \, d\beta(v),
\]
where \(\beta \) is also a probability measure on \(\Gamma \). Since \(g'(0)p(0) = 1 \), we use (3), (4)
and Fubini's theorem to obtain

\[f'(z) = \int_{\Gamma} \frac{u + g'(0)p(0)z}{u - z} \, d\alpha(u) \cdot \int_{\Gamma} \frac{1}{1 - vz} \, d\beta(v), \]

\[= \int_{\Gamma} \frac{1 + euz}{(1 - uz)(1 - vz)} \, d\alpha(u) \, d\beta(v), \quad (5) \]

where \(e = p(0)g'(0) \) satisfies \(|e| = 1\). To show that \(f \in \mathcal{C} \) it is sufficient to show that the kernel functions in (5) belong to \(\mathcal{F}' \), the set of derivatives of functions belonging to \(\mathcal{F} \). By a theorem in [1], given \(u \) and \(v \) there is a probability measure \(\gamma \) on \(\Gamma \) such that

\[\frac{1 + euz}{(1 - uz)(1 - vz)} = \int_{\Gamma} \frac{1 + euz}{(1 - wz)^2} \, d\gamma(w). \]

Thus we need only show for arbitrary \(w, |w| = 1 \), that we can find \(x, y, |x| = |y| = 1 \), such that

\[\frac{d}{dz} k(z, x, y) = \frac{1 + xyz}{(1 - yz)^2} = \frac{1 + euz}{(1 - wz)^2}. \]

Choosing the unit point mass \(k(z, x, y) = k(z, e\bar{w}u, w) \), we see that \(\text{cl} \text{co} \mathcal{C}_1 \subset \mathcal{F} \).

To show that \(\mathcal{F} \subset \text{cl} \text{co} \mathcal{C}_1 \), we need only show that \(\{k(z, x, y)\} \subset \mathcal{C}_1 \) for \(|x| = |y| = 1 \). Choose a complex number \(\delta = \delta(x) \) so that \(\text{Re}\{\delta(1 + xyz)/(1 - yz)\} > 0 \). Since \(g(z) = z/\delta(1 - yz) \) is convex, we have

\[\text{Re} \left(\frac{zdk(z, x, y)/dz}{g(z)} \right) = \text{Re} \frac{\delta(1 + xyz)}{1 - yz} > 0, \]

which shows that \(\{k(z, x, y)\} \subset \mathcal{C}_1 \).

Thus the only possible extreme points for \(\mathcal{C}_1 \) are \(\{k(z, x, y)\} \). Taking \(g = f \) in the definition of \(\mathcal{C}_1 \) and noting that convex functions are starlike, we see that \(\mathcal{C}_1 \) contains the convex functions. Since \(k(z, -1, y) = -\bar{v} \log(1 - yz) \) is convex but is not an extreme point of the closed convex hull of convex functions, it cannot be an extreme point of the larger set \(\text{cl} \text{co} \mathcal{C}_1 \).

Excluding \(x_0 = -1 \) from consideration, it suffices to show that for each \(x_0, y_0, |x_0| = |y_0| = 1 \),

\[k(z, x_0, y_0) = \int_{X} k(z, x, y) \, d\mu(x, y) \quad (6) \]

is possible only if \(\mu \) is a unit point mass at \((x_0, y_0) \). Differentiating both sides of (6) with respect to \(z \), we obtain

\[\frac{1 + x_0y_0z}{(1 - y_0z)^2} = \int_{X} \frac{1 + xyz}{(1 - yz)^2} \, d\mu(x, y). \]
Setting $z = y_0 r$ and letting $r \to 1^-$, we have

$$1 + x_0 = \lim_{r \to 1^-} \int_X \left(\frac{1 - r}{1 - y y_0 r} \right)^2 (1 + x y y_0 r) \, d\mu(x, y).$$

(7)

Since the integrand in (7) is bounded by 2, we may apply the Lebesgue bounded convergence theorem to obtain

$$1 + x_0 = \int_{\Gamma \times \{y_0\}} (1 + x) \, d\mu(x, y).$$

Setting $\Gamma_0 = \Gamma \times \{y_0\}$ and $a = \mu(\Gamma_0)$, we have $0 < a < 1$ and

$$1 + x_0 = a + \int_{\Gamma_0} x \, d\mu(x, y).$$

(8)

Since $|x_0 + (1 - a)| = |\int_{\Gamma_0} x \, d\mu(x, y)| < a$ and $|x_0 + (1 - a)| \geq |x_0| - (1 - a) = a$, we must have $x_0 = -1$ or $a = 1$. Since $x_0 \neq -1$, it follows that $a = 1$. From (8) we have $x_0 = \int_{\Gamma_0} x \, d\mu(x, y)$, which can hold only if μ is a unit point mass at (x_0, y_0).

Corollary 1. If $f(z) = z + \sum_{n=1}^{\infty} a_n z^n \in C_1$, then $|a_n| < 2 - 1/n$, with equality for $k(z, 1, -1)$.

Proof. We need only consider $f \in C_1$ of the form $k(z, x, y)$. It is easy to see that the modulus of the coefficients of k are maximized when $x = 1$ and $y = -1$.

Similarly we have

Corollary 2. If $f \in C_1$, then

$$\frac{2r}{1 + r} - \log(1 + r) \leq |f(z)| \leq \frac{2r}{1 - r} + \log(1 - r) \quad (|z| < r)$$

and

$$\frac{1 - r}{(1 + r)^2} \leq |f'(z)| \leq \frac{1 + r}{(1 - r)^2} \quad (|z| < r),$$

with equality for $k(z, 1, 1)$ at $z = \pm r$.

We can use similar arguments to determine the extreme points of C_2. But we will use known results for C to give a quicker proof.

Theorem 2. Let X be the torus $\{(x, y) | |x| = |y| = 1\}$, \mathcal{P} be the set of probability measures on X,

$$h(z, x, y) = \frac{1 - x y}{2} \frac{z}{1 - y z} - \frac{1 + x y}{2} y \log(1 - y z)$$

for $|x| = |y| = 1$, and let \mathcal{F} be the set of functions f_μ defined by

$$f_\mu(z) = \int_X h(z, x, y) \, d\mu(x, y) \quad (\mu \in \mathcal{P}).$$
Then
\[\text{cl co } \mathcal{C}_2 = \mathcal{F} \]
and
\[\mathcal{O}(\text{cl co } \mathcal{C}_2) = \{h(z, x, y) | x \neq y\}. \]

Proof. Observe that \(f \in \mathcal{C}_2 \) if and only if \(zf' \in \mathcal{C} \). Thus the operator \(L \) defined by \(L(f) = \int_0^1 f(\xi)/\xi \, d\xi \) is a linear homeomorphism on the space of analytic functions with \(L(\mathcal{C}) = \mathcal{C}_2 \). Since
\[h(z, x, y) = \int_0^x \frac{1 - (x + y)\xi/2}{(1 - y\xi)^2} \, d\xi, \]
the result follows from the results for \(\mathcal{C} \) proved in [1].

Corollary. If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{C}_2 \), then \(|a_n| < 1 \) and
\[\frac{r}{1 + r} < |f(z)| < \frac{r}{1 - r} \quad (|z| < r), \]
\[\frac{1}{(1 + r)^2} < |f'(z)| < \frac{1}{(1 - r)^2} \quad (|z| < r). \]
Equality in all cases is obtained for \(f(z) = z/(1 - z) \).

Remarks. The extreme points of both \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \) are linear combinations of the extreme points of the convex functions and the functions convex of order \(\frac{1}{2} \). See [2]. Setting \(x = -y \), we see that the extreme points of convex functions are contained in those for \(\mathcal{C}_2 \).

3. The class \(\mathcal{C}_3 \)

The standard techniques cannot be applied to determine the extreme points of \(\text{cl co } \mathcal{C}_3 \) because of the presence of an additional parameter in the numerator. Nevertheless we still have sharp coefficient bounds and distortion theorems for the class \(\mathcal{C}_3 \).

Theorem 3. If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{C}_3 \), then \(|a_n| < 2/3 + 1/3n^2 \). This result is sharp, with equality for
\[f(z) = \frac{2}{3} \frac{z}{1 - z} - \frac{1}{3} \int_0^z \frac{\log(1 - \xi)}{\xi} \, d\xi. \]

Proof. If \(f \in \mathcal{C}_3 \), then there exists a convex function \(g(z) = \sum_{n=1}^{\infty} b_n z^n \) and a function of positive real part \(p(z) = \sum_{n=0}^{\infty} c_n z^n \) with \(|b_1| = |c_0| = 1 \) such that \([z f']' = [z g'] p \). Then
\[[z f']' = \sum_{n=1}^{\infty} n^3 a_n z^{n-1} = \left(\sum_{n=1}^{\infty} n^2 b_n z^{n-1} \right) \left(\sum_{n=0}^{\infty} c_n z^n \right). \]
Equating coefficients, we have \(n^3 a_n = \sum_{k=1}^{n} k^2 b_k c_{n-k} \). It is well known that \(|b_n| < 1 \) and \(|c_n| < 2 \) for \(n > 1 \). Hence
\[n^3 |a_n| < 2 \sum_{k=1}^{n-1} k^2 + n^2 = \frac{n(n - 1)(2n - 1)}{3} + n^2. \]
which simplifies to $|a_n| < \frac{2}{3} + 1/3n^2$. To show that the extremal function is in C_3, we take $g(z) = z/(1 - z)$.

Theorem 4. If $f \in C_3$, then

\[
\frac{2}{3} \frac{r}{1 + r} + \frac{1}{3} \int_0^r \log(1 + t) \frac{dt}{t} \leq |f(z)| \leq \frac{2}{3} \frac{r}{1 - r} - \frac{1}{3} \int_0^r \log(1 - t) \frac{dt}{t} \quad (|z| \leq r),
\]

\[
\frac{2}{3} \frac{1}{(1 + r)^2} + \frac{1}{3} \log(1 + r) - \frac{r}{3} \leq |f'(z)| \leq \frac{2}{3} \frac{1}{(1 - r)^2} - \frac{1}{3} \log(1 - r) \quad (0 < |z| < r).
\]

Equality holds in all cases for the extremal function of Theorem 3.

Proof. Setting $h = zf'$, we may write $[zh]' = pg'$, where $p(z)$ is a function of positive real part, $g(z)$ is a starlike function, and $|p(0)| = |g'(0)| = 1$. It is well known that $(1 - r)/(1 + r) < |p(z)| < (1 + r)/(1 - r)$ and $(1 - r)/(1 + r) < |g'(z)| < (1 + r)/(1 - r)$ for $|z| < r$. Hence

\[
\frac{(1 - r)^2}{(1 + r)^4} \leq |[zh'(z)]'| \leq \frac{(1 + r)^2}{(1 - r)^4} \quad (|z| \leq r).
\]

Integrating along the straight line segment from the origin to $z = re^{i\theta}$ in the right inequality of (9) we obtain

\[
|zh'(z)| \leq \int_0^r \frac{(1 + t)^2}{(1 - t)^4} \frac{dt}{3(1 - r)^3} \quad (|z| = r). \quad (10)
\]

Now for every r choose z_0, $|z_0| = r$, such that $|h'(z_0)| = \min_{|z| = r} |h'(z)|$. If $L(z_0)$ is the pre-image of the segment $\{0, z_0h'(z_0)\}$, then

\[
|zh'(z)| > |z_0h'(z_0)| = \int_{L(z_0)} |(zh'(z))'| \, |dz|
\geq \int_0^r \frac{(1 - t)^2}{(1 + t)^4} \frac{dt}{3(1 + r)^3}. \quad (11)
\]

In view of (10) and (11),

\[
\frac{3 + r^2}{3(1 + r)^3} \leq |[zh'(z)]'| \leq \frac{3 + r^2}{3(1 - r)^3} \quad (|z| = r).
\]

Using again the method that gave us (10) and (11), we obtain

\[
\frac{2}{3} \frac{r}{(1 + r)^2} + \frac{1}{3} \log(1 + r) \leq |zh'(z)| \leq \frac{2}{3} \frac{r}{(1 - r)^2} - \frac{1}{3} \log(1 - r).
\]
One more application yields

\[
\frac{2}{3} \frac{r}{1 + r} + \frac{1}{3} \int_0^r \frac{\log(1 + t)}{t} \, dt
\]

\[
\leq |f(z)| \leq \frac{2}{3} \frac{r}{1 - r} - \frac{1}{3} \int_0^r \frac{\log(1 - t)}{t} \, dt.
\]

The coefficient bounds give some indication as to the degree of containment of \(C_3 \subset C_2 \subset C_1 \). Another measure is the following covering theorem.

Theorem 5. The disk \(\mathbb{D} \) is mapped onto a domain that contains the disk \(|w| < 1 - \log 2 \approx 0.31 \) by any \(f \in C_1 \), onto a domain that contains the disk \(|w| < 0.50 \) by any \(f \in C_2 \), and onto a domain that contains the disk \(|w| < (\pi^2 + 12)/36 \approx 0.61 \) by any \(f \in C_3 \).

Proof. Let \(r \to 1^- \) in the lower bound of the distortion results for \(f \) in the three classes.

References

Department of Mathematics, College of Charleston, Charleston, South Carolina 29401

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506