A MAXIMUM PRINCIPLE
FOR SEMILINEAR PARABOLIC SYSTEMS

ROBERT H. MARTIN, JR.

ABSTRACT. We develop a criterion insuring that every component of the solution to a system of semilinear parabolic equations is strictly positive for positive time. This criterion involves the strict (component-wise) positiveness of solutions to a related ordinary differentiable system.

In this note we present a result concerning the strict positiveness of solutions $\dot{u} = (u_1, \ldots, u_m)$ to the following system of weakly coupled parabolic equations

$$\frac{\partial}{\partial t} u_k(t, x) = L_k u_k(t, x) + F_k(t, x, \dot{u}(t, x), \Delta u_k(t, x)),$$

$$t > 0, \ x \in \Omega, \ y \in \partial \Omega, \ k = 1, \ldots, m,$$

$$B_k u_k(t, y) = 0, \ u_k(0, x) = \chi_k(x) > 0. \quad (PS)$$

Here $\Omega \subset \mathbb{R}^n (n \geq 1)$ is a bounded domain with smooth boundary, $\partial \Omega$, and Δ is the gradient operator (with respect to $x \in \mathbb{R}^n$). Also, for each $k \in \{1, \ldots, m\}$, L_k is a uniformly elliptic operator with the representation

$$L_k \sim \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{k,ij}(x) \frac{\partial}{\partial x_j} \right)$$

with real-valued, smooth coefficient functions $a_{k,ij} = a_{k,ji}$; and B_k is a boundary operator on $(0, \infty) \times \partial \Omega$ of the form

$$B_k u_k(t, y) = b_k(y) u_k(t, y) + \delta_k \frac{\partial}{\partial y} u_k(t, y)$$

where ν is the outward normal on $\partial \Omega$ and either $\delta_k = 0$ and $b_k(y) \equiv 1$ on $\partial \Omega$, or $\delta_k = 1$ and $b_k(y) > 0$ on $\partial \Omega$. Moreover, the real-valued function F_k is C^2 on $[0, \infty) \times \bar{\Omega} \times \mathbb{R}^m \times \mathbb{R}^n$ and for each $R > 0$ there are numbers $M > 0$ and $\gamma \in [0, 2)$ such that

$$|F_k(t, x, \xi, \eta)| \leq M (1 + |\eta|^\gamma)$$

whenever $t \in [0, R], \ x \in \bar{\Omega}, \ \eta \in \mathbb{R}^n,$ and $\xi \in \mathbb{R}^m$ with $||\xi|| \leq R$.

Received by the editors February 24, 1978 and, in revised form, June 7, 1978.

Key words and phrases. Nonlinear parabolic systems, maximum principle, strict positiveness of solutions.

1Work supported in part by the U. S. Army Research Office, Research Triangle Park, North Carolina.
The purpose of this note is to obtain a criterion insuring the strict positiveness of every component for solutions to (PS). Our criterion is based on the behavior of solutions to a related system of ordinary differential equations in \mathbb{R}^m. Let θ denote the zero vector in \mathbb{R}^m and for each $\xi = (\xi_i)^m_i$ and $\eta = (\eta_i)^m_i$ in \mathbb{R}^m write $\xi > \eta$ only in case $\xi_i > \eta_i$ for $i = 1, \ldots, m$, and write $\xi \gg \eta$ only in case $\xi_i > \eta_i$ for $i = 1, \ldots, m$. Also, let θ denote the zero of \mathbb{R}^m. It is assumed that $F = (F_k)^m_k$ satisfies the following type of quasipositive condition:

$$\text{if } k \in \{1, \ldots, m\} \text{ and } \xi \gg \theta \text{ with } \xi_k = 0, \text{ then } F_k(t, x, \xi, \theta) \gg 0 \text{ for all } (t, x) \in [0, \infty) \times \Omega. \quad (1)$$

Throughout this note it is assumed that x_0 is a (fixed) member of Ω and that $g = (g_k)^m_k$ is defined on $[0, \infty) \times \mathbb{R}^m$ by

$$g_k(t, \xi) = F_k(t, x_0, \xi, \theta) \quad \text{for } (t, \xi) \in [0, \infty) \times \mathbb{R}^m \text{ and } k = 1, \ldots, m. \quad (2)$$

Our comparison system of ordinary differential equations is

$$z'(t) = g(t, z(t)), \quad t > 0. \quad \text{(ODE)}$$

From (1) we see that if $k \in \{1, \ldots, m\}$ and $\xi > \theta$ with $\xi_k = 0$, then $g_k(t, \xi) > \theta$, and therefore it is easily deduced that if z is a solution to (ODE) with $z(t_0) > \theta$, then $z(t) > \theta$ for all $t > t_0$. Our second main supposition is

Γ is a subset of $\{1, \ldots, m\}$ with the property that for each solution

$$z = (z_i)^m_i \text{ to (ODE), the conditions } z(t_0) > \theta \text{ and } z_i(t_0) > 0 \text{ for } i \in \Gamma \quad (3)$$

imply $z(t) \gg \theta$ for all $t > t_0$.

One should note that if $z(t_0) \gg \theta$, then $z(t) \gg \theta$ for all $t > t_0$, and hence (3) is always satisfied with $\Gamma = \{1, \ldots, m\}$. If each solution z has the property that $z(t_0) > \theta$ implies $z(t) \gg \theta$ for all $t > t_0$, then (3) holds with Γ the empty set.

The final assumption is technical, but is less restrictive than requiring F to be quasimonotone:

$$\text{if } t > 0, k \in \{1, \ldots, m\} - \Gamma, \text{ and } \xi > \theta \text{ is such that } \xi_k = 0 \text{ and } F_k(t, x_0, \xi, \theta) = 0, \text{ then } F_k(t, x_0, \eta, \theta) = 0 \text{ for all } \theta < \eta < \xi. \quad (4)$$

Observe that (4) is a consequence of (1) whenever

$$\frac{\partial}{\partial \xi_j} F_i(t, x_0, \xi, \theta) > 0 \quad \text{for } i \neq j \text{ (i.e. whenever } F \text{ is quasimonotone).}$$

THEOREM. Suppose Γ is a subset of $\{1, \ldots, m\}$ and (1), (3) and (4) are satisfied. Suppose also that the nonnegative initial function $\chi = (\chi_k)^m_k$ is continuous on $\overline{\Omega}$ and that χ_k is nontrivial for each $k \in \Gamma$. Then there is a $T > 0$ such that the solution $\bar{u} = (u_k)^m_k$ to (PS) exists on $[0, T) \times \Omega$ and satisfies $\bar{u}(t, x) \gg \theta$ for all $(t, x) \in (0, T) \times \Omega$.

For our proof we use the following result:

LEMMA. For each continuous, nonnegative $\chi = (\chi_k)^m_k$ on $\overline{\Omega}$ there is a $T > 0$ such that (PS) has a solution $\bar{u} = (u_k)^m_k$ on $[0, T) \times \Omega$ with the property that if
If \(k \in \{1, \ldots, m\} \), then either \(u_k(t, x) \equiv 0 \) on \((0, T) \times \Omega\) or \(u_k(t, x) > 0 \) on \((0, T) \times \Omega\).

We first give the proof of the theorem and then indicate the proof of this lemma.

Proof of Theorem. Let \(\tilde{u} = (u_k)^m \) be the solution to (PS) guaranteed by the Lemma and suppose, for contradiction, that \(u_k(t, x_i) = 0 \) for some \((t_i, x_i) \in (0, T) \times \Omega\) and some \(k \). Using the Lemma again, we see that if \(\Gamma_0 = \{ k : u_k \equiv 0 \text{ on } (0, T) \times \Omega \} \) and \(\Gamma_1 = \{ k : u_k > 0 \text{ on } (0, T) \times \Omega \} \) then \(\Gamma_0 \neq \emptyset, \Gamma_0 \cup \Gamma_1 = \{1, \ldots, m\}, \Gamma_1 \supset \Gamma \), and \(\Gamma_0 \cap \Gamma_1 = \emptyset \). It is immediate from (PS) that

\[
F_k(t, x, \tilde{u}(t, x), \theta) = 0 \quad \text{on } (0, T) \times \Omega \text{ and } k \in \Gamma_0. \tag{5}
\]

Choose \(0 < a < b < T \) and select \(\xi = (\xi_i)^m \in \mathbb{R}^m \) such that \(\xi_i = 0 \) for \(i \in \Gamma_0 \) and \(0 < 2\xi_i < u_i(t, x_0) \) for \(i \in \Gamma_1 \) and \(t \in [a, b] \). From (4) and (5) we have

\[
F_k(t, x_0, \eta, \theta) = 0 \quad \text{for } t \in [a, b], \theta < \eta < 2\xi_i, k \in \Gamma_0. \tag{6}
\]

Now define the function \(z = (z_i)^m \) on \([a, b]\) as follows: \(z_i(t) \equiv 0 \) on \([a, b]\) for \(i \in \Gamma_0 \) and \(\{ z_i : i \in \Gamma_1 \} \) satisfies the initial value problem

\[
z_i(t) = F_i(t, x_0, z(t), \theta), \quad t \in [a, b], z_i(a) = \xi_i, i \in \Gamma_1. \tag{7}
\]

Since \(\xi_i > 0 \) for \(i \in \Gamma_1 \), choose \(c \in (a, b) \) such that \(0 < z_i(t) < 2\xi_i \) for all \(t \in [a, c] \) and \(i \in \Gamma_1 \), and then note that

\[
0 = F_i(t, x_0, z(t), \theta), \quad t \in [a, c], z_i(a) = \xi_i = 0, i \in \Gamma_0. \tag{7}'
\]

by (6). From the definition of \(g \) (see (2)) it is immediate from (7) and (7)' that \(z \) is a solution to (ODE) on \([a, c]\) with \(z_i(a) > 0 \) for \(i \in \Gamma_1 \supset \Gamma \) and \(z_i(t) \equiv 0 \) for \(i \in \Gamma_0 \). This contradicts assumption (3) and we conclude that \(\Gamma_0 \) must be empty. This proves the Theorem once the Lemma is established.

Proof of Lemma. The quasipositive assumption (1) along with a weak form of the maximum principle for parabolic equations implies that the solution \(u = (u_i)^m \) satisfies \(u(t, x) > \theta \) on \([0, T) \times \Omega\) for some \(T > 0 \) (see, e.g., the techniques in Amann [1], Lemmert [4], Lightbourne and Martin [5], and Volkmann [8]). Fix a number \(k \) in \(\{1, \ldots, m\} \) and for \((t, x) \in [0, T) \times \Omega, r \in \mathbb{R}, \) and \(l \in \{1, \ldots, n\} \) define

\[
w_{k, l, x, r} = (\xi_i)^m \quad \text{where } \xi_k = r \text{ and } \xi_i = u_i(t, x) \text{ for } i \neq k
\]

and

\[
q_{k, l, x, r} = (\eta_i)^m \quad \text{where } \eta_l = r, \eta_j = 0 \text{ for } j < l \text{ and }
\]

\[\eta_j = \frac{\partial}{\partial x_j} u_k(t, x) \quad \text{for } j > l.\]

Now define

\[
\alpha_k(t, x) = u_k(t, x)^{-1} \int_0^{u_k(t, x)} \frac{\partial}{\partial \xi_k} F_k(t, x, w_{k, l, x, r}, \Delta u_k(t, x)) \, dr
\]
and
\[\beta_{k,l}(t, x) = h_l(t, x)^{-1} \int_0^{h_l(t, x)} \frac{\partial}{\partial q_l} F_k(t, x, w_{k,t,x,0}, q_{k,t,x,l}) \, dq \]
where \(h_l(t, x) \equiv \frac{\partial}{\partial x_l} u_k(t, x) \) \((l = 1, \ldots, n)\). Then
\[F_k(t, x, \bar{u}(t, x), \Delta u_k(t, x)) = F_k(t, x, w_{k,t,x,0}, \theta) + \alpha_k(t, x) u_k(t, x) + \sum_{l=1}^n \beta_{k,l}(t, x) \frac{\partial}{\partial x_l} u_k(t, x) \]
and since \(F_k(t, x, w_{k,t,x,0}, \theta) > 0 \) by (1) it follows from (PS) that
\[\frac{\partial}{\partial t} u_k(t, x) > L_k u_k(t, x) + \alpha_k(t, x) u_k(t, x) + \sum_{l=1}^n \beta_{k,l}(t, x) \frac{\partial}{\partial x_l} u_k(t, x) \]
for all \((t, x) \in (0, T) \times \Omega\). Since \(u_k > 0 \) on \((0, T) \times \Omega\) we have from a strong form of the maximum principle \([7, pp. 173 and 175]\) that \(T \) can be chosen so that either \(u_k \equiv 0 \) on \((0, T) \times \Omega\) or \(u_k > 0 \) on \((0, T) \times \Omega\). This completes the proof indication of the Lemma.

As an illustration of this result, we consider the mathematical model of a cellular control process with either positive or negative feedback. (See Griffith \([2, 3]\).) This model is the system of three ordinary differential equations
\[
\begin{align*}
z_1' &= -\alpha z_1 + h(z_3), \quad z_1(0) > 0, \\
z_2' &= -\beta z_2 + z_1, \quad z_2(0) > 0, \\
z_3' &= -\gamma z_3 + z_2, \quad z_3(0) > 0,
\end{align*}
\]
where \(\alpha, \beta, \gamma \) are positive constants and the function \(h \) is defined on \([0, \infty)\) by either \(h(r) = r^\sigma(1 + r^\sigma)^{-1} \) (positive feedback) or \(h(r) = (1 + r^\sigma)^{-1} \) (negative feedback), and \(\sigma > 1 \) is a constant. Defining \(F = (F_i)_3 \) by the right side of (8):
\[
\begin{align*}
F_1(\xi) &= -\alpha \xi_1 + h(\xi_3); \quad F_2(\xi) = -\beta \xi_2 + \xi_1; \quad F_3(\xi) = -\gamma \xi_3 + \xi_2;
\end{align*}
\]
one may easily check that (1), (3) and (4) are satisfied whenever \(\Gamma \) is any nonempty subset of \(\{1, 2, 3\} \). From the Theorem we may conclude, for example, if at least one of the nonnegative initial values \(\chi_1, \chi_2 \) or \(\chi_3 \) is nontrivial, the solution \((u_i)_3\) to the reaction-diffusion system
\[
\begin{align*}
\frac{\partial}{\partial t} u_1 &= d_1 \Delta u_1 - \alpha u_1 + h(u_3), \\
\frac{\partial}{\partial t} u_2 &= d_2 \Delta u_2 - \beta u_2 + u_1, \quad (t, x) \in (0, \infty) \times \Omega, \\
\frac{\partial}{\partial t} u_3 &= d_3 \Delta u_3 - \gamma u_3 + u_2,
\end{align*}
\]
\((u_i)_3 = (\chi_i)_3 \) for \(t = 0, x \in \Omega\),
\[u_i = 0 \quad \text{for} \ t > 0, y \in \partial \Omega, \text{and} \ i = 1, 2, 3, \]
satisfies \(u_i(t, x) > 0 \) for all \(t > 0, x \in \Omega \) and \(i = 1, 2, 3 \). Here \(d_i > 0 \) for \(i = 1, 2, 3 \) and \(\Delta \) is the Laplacian on \(\Omega \). Observe that the nonlinearity \(F \) is quasimonotone in the case of positive feedback, but not in the case of
negative feedback. Also, since the results of [6] depend not only on the quasimonotonicity of F but also the irreducibility of the jacobian $F'(\theta)$, one sees that the results of [6] establish the strict positiveness of solutions to (9) only in the case of positive feedback with $\sigma = 1$.

Remark. If one assumes that (PS) has a nonnegative solution \bar{u} on $[0, T) \times \Omega$, then the Theorem remains valid under less restrictive assumptions on the smoothness of F and $\partial \Omega$. Note that it is necessary only to be assured that each component of \bar{u} is either strictly positive or identically zero for the Theorem to hold.

References

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607