Representing ergodic flows as flows built under functions with finite range

Author:
Robin Fellgett

Journal:
Proc. Amer. Math. Soc. **74** (1979), 105-108

MSC:
Primary 28D10

DOI:
https://doi.org/10.1090/S0002-9939-1979-0521881-6

MathSciNet review:
521881

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown, using a result of Rudolph, that any cross-section of an ergodic flow whose return-time function is bounded and bounded away from zero is isomorphic to a cross-section whose return-time function has finite range. A weaker result holds if the boundedness conditions are removed.

**[1]**V. A. Rohlin,*Selected topics in the metric theory of dynamical systems*, Uspehi Mat. Nauk**4**(1949), 57-128 = Amer. Math. Soc. Transl. (2)**49**(1966), 171-240. MR**0030710 (11:40b)****[2]**W. Ambrose,*Representation of ergodic flows*, Ann. of Math.**42**(1941), 723-739. MR**0004730 (3:52c)****[3]**W. Ambrose and S. Kakutani,*Structure and continuity of measurable flows*, Duke Math. J.**9**(1942), 25-42. MR**0005800 (3:210f)****[4]**D. Rudolph,*A*2-*valued step coding for ergodic flows*, Math. Z.**150**(1976), 201-220. MR**0414825 (54:2917)****[5]**S. Kakutani,*Induced measure preserving transformations*, Proc. Imp. Acad. Tokyo**19**(1943), 635-641. MR**0014222 (7:255f)****[6]**B. M. Gurevič,*Construction of increasing partitions for special flows*, Teor. Verojatnost. i Primenen.**10**(1965), 693-712 = Theor. Probability Appl.**10**(1965), 627-645. MR**0212159 (35:3034)****[7]**W. Parry,*Cocycles and velocity changes*, J. London Math. Soc.**5**(1972), 511-516. MR**0320276 (47:8815)****[8]**N. Friedman,*Introduction to ergodic theory*, Van Nostrand, Princeton, N. J., 1970. MR**0435350 (55:8310)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28D10

Retrieve articles in all journals with MSC: 28D10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1979-0521881-6

Keywords:
Ergodic flow,
flow built under a function,
cohomologous functions,
time change

Article copyright:
© Copyright 1979
American Mathematical Society