Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extensions relative to a $ {\rm II}\sb{\infty }$-factor


Author: Sung Je Cho
Journal: Proc. Amer. Math. Soc. 74 (1979), 109-112
MSC: Primary 46L99
DOI: https://doi.org/10.1090/S0002-9939-1979-0521882-8
MathSciNet review: 521882
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It will be shown that the equivalence classes of $ {C^\ast}$-algebra extensions of $ C(X)$ relative to a $ {\text{II}_\infty }$-factor and $ \operatorname{Hom}({\tilde K^1}(X),{\mathbf{R}})$ are isomorphic. This provides a proof for the result of Brown, Douglas and Fillmore [5] on the isomorphism between the former group and $ \operatorname{Hom}(\tilde K_{{\text{II}}}^1(X),{\mathbf{R}})$.


References [Enhancements On Off] (What's this?)

  • [1] M. Breuer, Fredholm theories in von Neumann algebras. I, Math. Ann. 178 (1968), 243-254. MR 0234294 (38:2611)
  • [2] -, Fredholm theories in von Neumann algebras. II, Math. Ann. 180 (1969), 313-325. MR 0264407 (41:9002)
  • [3] L. G. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $ {C^\ast}$-algebras, Lecture Notes in Math., vol. 345, Springer-Verlag, Berlin and New York, 1973. MR 0380478 (52:1378)
  • [4] -, Extensions of $ {C^\ast}$-algebras, operators with compact self-commutators, and K-homology theory, Bull. Amer. Math. Soc. 79 (1973), 973-978. MR 0346540 (49:11265)
  • [5] -, Extensions of $ {C^\ast}$-algebras and K-homology, Ann. of Math. 105 (1977), 265-324. MR 0458196 (56:16399)
  • [6] P. A. Fillmore, Extensions relative to semifinite factors, Istituto Nazionale di Alta Matematica, Simposia Matematica 20 (1976), 487-496. MR 0450989 (56:9279)
  • [7] J. Milnor, On the Steenrod homology theory, mimeographed notes.
  • [8] C. L. Olsen, A structure theorem for polynomially compact operators, Amer. J. Math. 93 (1971), 686-698. MR 0405152 (53:8947)
  • [9] G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. 34 (1968), 129-151. MR 0234452 (38:2769)
  • [10] L. Zsido, The Weyl-von Neumann theorem in semifinite factors, J. Functional Analysis 18 (1975), 60-72. MR 0377546 (51:13717)
  • [11] N. Bourbaki, Algèbre I, Chapitres 1 à 3, Hermann, Paris, 1970. MR 0274237 (43:2)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L99

Retrieve articles in all journals with MSC: 46L99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0521882-8
Keywords: $ {\text{II}_\infty }$-factor, $ {C^\ast}$-algebra extension, compact operators, Calkin algebra, Steenrod homology
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society