A normal first countable ccc nonseparable space

Author:
Murray G. Bell

Journal:
Proc. Amer. Math. Soc. **74** (1979), 151-155

MSC:
Primary 54D15; Secondary 54G20

DOI:
https://doi.org/10.1090/S0002-9939-1979-0521889-0

MathSciNet review:
521889

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct an absolute example of a space having the properties in the title. Let *Y* be the set of nonempty finite subsets of the Cantor cube of countable weight. The Pixley-Roy topology on *Y* is not normal, but the Vietoris topology on *Y* is normal. Our space can be considered a normalization of the Pixley-Roy topology on *Y* by adding cluster points which as a subspace have the Vietoris topology. The Alexandroff duplicating procedure is used liberally to glue the space together. The example is also a sigma compact paracompact *p*-space.

If further set-theoretic assumptions are made (e.g. or ), then it is known that even perfectly normal such examples exist.

**[1]**A. V. Arhangel' skiĭ,*On a class of spaces containing all metric spaces and all locally bicompact spaces*, Amer. Math. Soc. Transl. (2)**92**(1970), 1-39.**[2]**M. Bell, J. Ginsburg and G. Woods,*Cardinal inequalities for topological spaces involving the weak Lindelöf number*, Pacific J. Math. (to appear). MR**526665 (80c:54003)****[3]**E. van Douwen,*The Pixley-Roy topology on spaces of subsets*, Set-Theoretic Topology, ed. G. M. Reed, Academic Press, New York, 1977. MR**0440489 (55:13364)****[4]**-,*Density of compactifications*, Set-Theoretic Topology, ed. G. M. Reed, Academic Press, New York, 1977. MR**0431077 (55:4079)****[5]**E. van Douwen and T. C. Przymusiński,*First countable and countable spaces all compactifications of which contain*, Fund. Math. (to appear).**[6]**A. Hajnal and I. Juhász,*A consequence of Martin's Axiom*, Indag. Math.**33**(1971), 457-463. MR**0305344 (46:4474)****[7]**T. Jech,*Nonprovability of Souslin's Hypothesis*, Comment. Math. Univ. Carolinae**8**(1967), 293-296. MR**0215729 (35:6564)****[8]**E. Michael,*Topologies on spaces of subsets*, Trans. Amer. Math. Soc.**71**(1951), 152-183. MR**0042109 (13:54f)****[9]**C. Pixley and P. Roy,*Uncompletable Moore spaces*, in Proc. Auburn Topology Conference, ed. W.R.R. Transue, (Auburn, Alabama, 1969). MR**0397671 (53:1529)****[10]**T. Przymusiński and F. D. Tall,*The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition*, Fund. Math.**85**(1974), 291-297. MR**0367934 (51:4176)****[11]**M. E. Rudin,*Lectures on set-theoretic topology*, CBMS Regional Conference Ser. in Math. no. 23, Amer. Math. Soc., Providence, R.I., 1975. MR**0367886 (51:4128)****[12]**R. M. Solovay and S. Tennenbaum,*Iterated Cohen extensions and Souslin's problem*, Ann. of Math. (2)**94**(1971), 201-245. MR**0294139 (45:3212)****[13]**F. D. Tall,*On the existence of non-metrizable hereditarily Lindelöf spaces with point-countable bases*, Duke Math. J.**41**, (1974), 299-304. MR**0388339 (52:9176)****[14]**V. M. Ul'janov,*Examples of Lindelöf spaces having no compact extensions of countable character*, Dokl. Akad. Nauk SSSR**220**(1975), 1282-1285 = Soviet Math. Dokl.**16**(1975), 257-261. MR**0405378 (53:9172)****[15]**L. Vietoris,*Bereiche Zweiter Ordnung*, Monatsh. Math.**33**(1923), 49-62. MR**1549268****[16]**S. Willard,*General topology*, Addison-Wesley, Reading, Mass., 1970. MR**0264581 (41:9173)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54D15,
54G20

Retrieve articles in all journals with MSC: 54D15, 54G20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1979-0521889-0

Keywords:
First countable,
normal,
ccc,
separable

Article copyright:
© Copyright 1979
American Mathematical Society