A CHARACTERIZATION FOR THE PRODUCT OF CLOSED IMAGES OF METRIC SPACES TO BE A k-SPACE

YOSHIO TANAKA

Abstract. We give, under [CH], a necessary and sufficient condition for the product of two closed images of metric spaces to be a k-space.

1. Introduction. In [14, Theorem 4.3], we proved the following result. Recall that a space \(X \) is said to belong to class \(\mathcal{K} \) if it is the union of countably many closed and locally compact subsets \(X_n \) such that \(F \subset X \) is closed whenever \(F \cap X_n \) is closed for all \(n \).

Theorem 1.0. Let \(X \) and \(Y \) be closed s-images of metric spaces. Then \(X \times Y \) is a k-space if and only if one of the following three properties holds:

1. \(X \) and \(Y \) are metrizable spaces.
2. \(X \) or \(Y \) is a locally compact, metrizable space.
3. \(X \) and \(Y \) are spaces of class \(\mathcal{K} \).

In that place, we raised the question whether this theorem remains true if “s-images” is weakened to “images”.

In this paper, under the continuum hypothesis [CH], we shall give the following affirmative answer to this question.

Theorem 1.1 [CH]. Let \(X \) and \(Y \) be closed images of metric spaces under maps \(f \) and \(g \) respectively. Then \(X \times Y \) is a k-space (equivalently, \(f \times g \) is a quotient map by [6, Theorem 1.5]) if and only if one of the three properties of Theorem 1.0 holds.

Throughout this paper, we shall assume that all spaces are regular \(T_2 \), and all maps are continuous surjections.

2. Preliminaries. A space \(X \) is Fréchet if, whenever \(x \in \overline{A} \), then some sequence of points of \(A \) converges to \(x \). Obviously, every closed image of a first countable space is Fréchet.

Recall that a space \(X \) is strongly Fréchet [10] (= countably bi-sequential in the sense of E. Michael [7]) if, whenever \(\{ F_n; n = 1, 2, \ldots \} \) is a decreasing sequence accumulating at \(x \in X \), there exist \(x_n \in F_n \) such that the sequence \(\{ x_n; n = 1, 2, \ldots \} \) converges to \(x \). Clearly every strongly Fréchet space is Fréchet.
THE PRODUCT OF CLOSED IMAGES OF METRIC SPACES

Lemma 2.1 (cf. [7, Theorem 9.9]). Let X be the closed image of a metric space (more generally, paracompact space) under a map f. If X is strongly Fréchet, then $\partial f^{-1}(x)$ is compact for every $x \in X$.

Since every Fréchet space is a sequential space, by [13, Lemma 2.1 (A) and Proposition 2.4] and [12, Theorem 2.2], we have

Lemma 2.2. Let X be a Fréchet space, and let Y be a metric space. Suppose that $X \times Y$ is a k-space. Then X is strongly Fréchet, or Y is locally compact.

Lemma 2.3. Let X be a Fréchet space, or a k-space each of whose points is a G$_\delta$-set. Let Y be the closed image of a collectionwise normal and Fréchet space Z under a map f. Suppose that $X \times Y$ is a k-space. Then X is strongly Fréchet, or every $\partial f^{-1}(y)$ has property (P) below.

(P) Every subset of cardinality $2^{<\kappa}$ in $\partial f^{-1}(y)$ has an accumulation point.

Proof. Suppose that there is $y_0 \in Y$ such that $\partial f^{-1}(y_0)$ does not have property (P). Then there is a closed discrete subset $\{x_\alpha; \alpha \in A\}$ of $\partial f^{-1}(y_0)$ with $|A| = 2^{<\kappa}$. Since Z is collectionwise normal, there is a discrete open collection $\{U_\alpha; \alpha \in A\}$ in Z with $x_\alpha \in U_\alpha$. Since Z is Fréchet, and $x_\alpha \in U_\alpha - f^{-1}(y_0)$ for each $\alpha \in A$, then there is a convergent sequence $\{x_{\alpha_1}; i = 1, 2, \ldots\}$ of $U_\alpha - f^{-1}(y_0)$ with its limit point x_α. Let $C_\alpha = \{x_{\alpha_1}; i = 1, 2, \ldots\} \cup \{x_\alpha\}$ for each $\alpha \in A$, and let $Z_0 = \bigcup_{\alpha \in A} C_\alpha$. Then, since $\{C_\alpha; \alpha \in A\}$ is a discrete closed collection in Z, Z_0 is a closed subset of Z. Let $g = f|Z_0$. Then g is a closed map from the locally compact, metric space Z_0. Let $Y_1 = \{y \in Y_0; g^{-1}(y)$ is not compact\}, where $Y_0 = g(Z_0)$. Then, by [8, Theorem 4], Y_1 is a closed discrete subset of Y_0. It is easy to see that $y_0 \in Y_1$. Since the sequence $g(C_\alpha)$ converges to y_0, and Y_1 is closed and discrete, then each C_α intersects only a finite number of $g^{-1}(y)$, $y \in Y_1$. Hence $C'_\alpha = C_\alpha - g^{-1}(Y_1)$ is infinite, which implies that each sequence C'_α converges to x_α. For each $\alpha \in A$, let $A_\alpha = g(C'_\alpha)$. Then $\mathcal{A} = \{A_\alpha; \alpha \in A\}$ is locally finite, hence point-finite in $Y_0 - Y_1$. For, g is a perfect map on $Z'_0 = Z_0 - g^{-1}(Y_1)$ and $\{C'_\alpha; \alpha \in A\}$ is a discrete collection in Z'_0. Since each A_α is countable, for each $\alpha \in A$, $A(\alpha) = \{\beta \in A; A_\alpha \cap A_\beta \neq \emptyset\}$ is at most countable. Then, there is a subset A' of A with cardinality $2^{<\kappa}$, such that $\mathcal{A}' = \{A_\alpha; \alpha \in A'\}$ is pairwise disjoint. Indeed, let $A = \{\alpha; \alpha < 2^{<\kappa}\}$. Then, for each α, there is a pairwise disjoint subcollection \mathcal{B}_α of \mathcal{A} such that $|\mathcal{B}_\alpha| < |\alpha|$ and $\bigcup_{\beta < \alpha} \mathcal{B}_\beta \subset \mathcal{B}_\alpha$. For, let $\{\mathcal{B}_\beta; \beta < \alpha\}$ be defined for each $\beta < \alpha$. Then we can choose $A_\alpha' \in \mathcal{A}$ with

$$A_\alpha' \cap \left(\bigcup_{\beta < \alpha} \{A_\delta; \delta \in \mathcal{B}_\beta\} \right) = \emptyset,$$

for each $A(\delta)$ is at most countable and $|\bigcup_{\beta < \alpha} \mathcal{B}_\beta| < |\alpha|$ ($\neq 2^{<\kappa}$). Let $\mathcal{B}_a = \{A_\alpha'\} \cup \bigcup_{\beta < \alpha} \mathcal{B}_\beta$. Then \mathcal{B}_a satisfies the conditions. Hence, $\mathcal{A}' = \bigcup_{\alpha < 2^{<\kappa}} \mathcal{B}_a$ is a pairwise disjoint subcollection of \mathcal{A} with cardinality $2^{<\kappa}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now, let $Z_1 = \bigcup_{x \in A'} \{ C'_x \cup \{ x_a \} \}$. Let $h = f|Z_1$. Then, since Z_1 is closed in Z, h is a closed map, hence is quotient. Moreover, $h(x_a) = y_0$ for each $\alpha \in A'$ and h is one-to-one on $\bigcup_{\alpha \in A'} C'_\alpha$ by the choice of the index set A'. Here, we may assume that $h|C'_\alpha$ is one-to-one for each $\alpha \in A'$. Thus, $h(Z_1)$ can be shown to be homeomorphic to a quotient space Z_1/F_1 obtained from Z_1 identifying all points of $F_1 = h^{-1}(y_0)$.

On the other hand, $X \times h(Z_1)$ is a closed subset of a k-space $X \times Y$, for $h(Z_1)$ is closed in Y. Hence $X \times h(Z_1)$ is a k-space. This implies that $X \times (Z_1/F_1)$, which is homeomorphic to $X \times h(Z_1)$, is a k-space. Thus, by [15, Lemma 2.1(2)], X is strongly Fréchet or ∂Z_1 has property (P). However, $\partial Z_1/F_1$ contains a closed discrete subset $\{ x_\alpha; \alpha \in A' \}$ of cardinality 2^α. Then it does not have property (P). Therefore X is strongly Fréchet. That completes the proof.

Proposition 2.4 [CH]. Let X be a Fréchet space, or a k-space each of whose points is a G_δ-set. Let Y be the closed image of a first countable, paracompact space under a map f. If $X \times Y$ is a k-space, then either X is strongly Fréchet, or $\partial f^{-1}(y)$ is locally compact and Lindelöf for every $y \in Y$.

Proof. Suppose that X is not strongly Fréchet. Then, without [CH], every $\partial f^{-1}(y)$ is locally compact by [15, Theorem 2.2]. Moreover, from Lemma 2.3, every $\partial f^{-1}(y)$ has property (P). Then, under [CH] it is easy to see that every $\partial f^{-1}(y)$ is Lindelöf, for every $\partial f^{-1}(y)$ is paracompact.

3. Proof of Theorem 1.1 and a related result.

Proof of Theorem 1.1. The “if” part is that of Theorem 1.0 stated in §1. So we shall prove the “only if” part.

(i) Suppose that every $\partial f^{-1}(x)$ is Lindelöf: If every $\partial g^{-1}(y)$ is also Lindelöf, as in the proof of [5, Corollary 1.2], we may assume that X and Y are closed s-images of metric spaces. Thus, by the “only if” part of Theorem 1.0, the assertion holds. If some $\partial g^{-1}(y_0)$ is not Lindelöf, then X is strongly Fréchet by Proposition 2.4. Thus X is metrizable by Lemma 2.1. On the other hand, Y is not strongly Fréchet by Lemma 2.1, for $\partial g^{-1}(y_0)$ is not compact. Hence X is locally compact by Lemma 2.2.

(ii) Suppose that some $\partial f^{-1}(x_0)$ is not Lindelöf: Then, as above, Y is locally compact and metrizable. That completes the proof.

As for the product of closed images of locally compact metric spaces, we have the following theorem, which is an improvement of [15, Proposition 2.6 or 2.7]. The “only if” part follows from the proof of Theorem 1.1. The “if” part follows from Proposition 3.2 below.

Theorem 3.1 [CH]. Let $f_i : X_i \to Y_i$ ($i = 1, 2$) be closed maps such that each X_i is a locally compact metric space (more generally, locally compact, Fréchet and paracompact space). Then $Y_1 \times Y_2$ is a k-space if and only if either of the following properties holds:
THE PRODUCT OF CLOSED IMAGES OF METRIC SPACES

(1) Every \(\partial f_{1}^{-1}(y_{1}) \) is compact, or every \(\partial f_{2}^{-1}(y_{2}) \) is compact. (Hence, \(Y_{1} \) or \(Y_{2} \) is locally compact.)

(2) Every \(\partial f_{i}^{-1}(y_{i}) \) is Lindelöf for \(i = 1, 2 \).

Proposition 3.2. (a) [4, Theorem 3.2] Let \(Y_{1} \) be a k-space, and let \(Y_{2} \) be a locally compact space. Then \(Y_{1} \times Y_{2} \) is a k-space.

(b) [15, Lemma 2.5] Let \(Y_{i} \) (\(i = 1, 2 \)) be closed images of locally compact spaces under maps \(f_{i} \) with each \(\partial f_{i}^{-1}(y_{i}) \) Lindelöf. Then \(Y_{1} \times Y_{2} \) is a k-space.

4. Some remarks to Theorem 1.1.

Remark 4.1. Concerning the “Fréchetness” for the product of two closed images of metric spaces, we have the following theorem from [9, Theorem 9.2] (also cf. [7, Proposition 4.D.5]), together with Lemma 2.1.

Theorem. Let \(X \) and \(Y \) be closed images of metric spaces. Then \(X \times Y \) is a Fréchet space (equivalently, hereditary k-space by [2]) if and only if either of the following properties holds:

1. \(X \) and \(Y \) are metrizable spaces.
2. \(X \) or \(Y \) is a discrete space.

Remark 4.2. Concerning the “\(k \)-ness” for the product of countably many copies of a closed image of a metric space, we have the following theorem from [13, Theorem 1.3] and [7, Theorem 7.3].

Theorem. Let \(X \) be a closed image of a metric space. Then \(X^{\omega} \) is a k-space if and only if \(X \) is a metrizable space.

Remark 4.3. As generalizations of metric spaces, J. G. Ceder [3] introduced three types of topological spaces which he called \(M_{1}, M_{2} \) and \(M_{3} \)-spaces, and observed that \(M_{1} \Rightarrow M_{2} \Rightarrow M_{3} \). An \(M_{1} \)-space is a regular space having a \(\sigma \)-closure preserving base. That every closed image of a metric space is \(M_{1} \) was proved by F. Slaughter [11]. The following example shows that Theorem 1.1 becomes false if “closed images of metric spaces” is weakened to “\(M_{1} \)-spaces”, even if in property (1) of Theorem 1.0 we replace “metrizable spaces” by “first countable spaces”.

Example. Let \(X \) be the Nagata space constructed in Example 9.2 in [3] \((X = \{(x, y); 0 < x < 1, y > 0\})\): the topology on \(X \) has a base consisting of disks missing the x-axis and sets of the form \(U_{n}(p) = \{p\} \cup \{(x, y); |x - p| < 1/n \text{ and } y \text{ lies below the graph of } (x - p)^{2} + (y - n)^{2} = n^{2}\}\). Obviously \(X \) is separable, first countable and not second countable. Hence \(X \) is not metrizable. The proof that \(X \) is \(M_{1} \), which is due to J. Nagata, is given in [3].

Let \(C \) be a closed interval contained in \((0, 1)\). Let \(Y \) be a quotient space obtained by identifying all points of \(C \), and let \(f: X \to Y \) be the natural quotient map. Since \(C \) is compact in \(X \), \(f \) is a perfect map. Then \(Y \times Y \) is a k-space, for it is the perfect image of a first countable space \(X \times X \). To show that \(Y \) is \(M_{1} \), let \(\mathcal{B} = \bigcup_{i=1}^{\omega} \mathcal{B}_{i} \) be a \(\sigma \)-closure preserving base for \(X \). We may assume that \(\mathcal{B}_{i} \subset \mathcal{B}_{i+1} \) for each \(i \), and that each \(\mathcal{B}_{i} \) is closed under arbitrary
unions. Then, since C is compact in X, \{ $f(B); \ B \in \mathfrak{B}$ with $C \subset B$ or $C \cap B = \emptyset$ \} is a α-closure preserving base for Y.

That Y is not first countable will be shown below, hence neither is Y locally compact by [3, Corollary 5.7]. Suppose that Y is first countable. Then the compact, separable metric subset C is of countable character in X (Arhangel’skiï [1, Definition 3.5]). Then, by [1, Lemma 3.2], there is a countable collection \mathfrak{B} of open subsets of X such that, if $c \in C$ and $c \in U$ with U open in X, then $c \in V \subset U$ for some $V \in \mathfrak{B}$. This implies that a subspace $C \times \{ y; y > 0 \}$ of X is second countable. But this is a contradiction, for the subspace is obviously non-second countable.

To show that Y is not a space of class \mathfrak{L}', suppose not. Then Y is the union of countably many closed and locally compact subsets Y_n such that, $F \subset Y$ is closed whenever $F \cap Y_n$ is closed for each n. We may assume that $Y_n \subset Y_{n+1}$ for each n. Then each compact subset of Y is contained in some Y_n. For any $x \in X$, let $\{ V_n; n = 1, 2, \ldots \}$ be a decreasing local base at x. Then, for some m, $f(V_m) \subset Y_m$, hence $V_m \subset f^{-1}(Y_m)$. While, since f is perfect, $f^{-1}(Y_m)$ is locally compact. Hence, by [3, Corollary 5.7], $f^{-1}(Y_m)$ is metrizable, so is V_m. This implies that X is a locally metrizable space. Then X is metrizable, for it is Lindelöf. But, this is a contradiction to the fact that X is nonmetrizable. Thus Y is not a space of class \mathfrak{L}'.

REFERENCES

DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY, 4-1-1 NUKUIKITA-MACHI, KOGANEI-SHI, TOKYO, JAPAN