Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$ k$-regular mappings of $ 2\sp{n}$-dimensional Euclidean space


Author: Michael E. Chisholm
Journal: Proc. Amer. Math. Soc. 74 (1979), 187-190
MSC: Primary 55S99; Secondary 41A50
MathSciNet review: 521896
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A map $ f:X \to {R^n}$ is said to be k-regular if whenever $ {x_1}, \ldots ,{x_k}$ are distinct points of X, then $ f({x_1}), \ldots ,f({x_k})$ are linearly independent. Using configuration spaces and homological methods, it is shown that there does not exist a k-regular map from $ {R^n}$ into $ {R^{n(k - \alpha (k)) + \alpha (k) - 1}}$ where $ \alpha (k)$ denotes the number of ones in the dyadic expansion of k and n is a power of 2.


References [Enhancements On Off] (What's this?)

  • [1] V. G. Boltjanskiĭ, S. S. Ryškov, and Ju. A. Šaškin, On 𝑘-regular imbeddings and on applications to theory of function approximation, Uspehi Mat. Nauk 15 (1960), no. 6 (96), 125–132 (Russian). MR 0125567
  • [2] K. Borsuk, On the 𝑘-independent subsets of the Euclidean space and of the Hilbert space, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 351–356, XXIX (English, with Russian summary). MR 0088710
  • [3] F. R. Cohen, The homology of $ {\mathcal{C}_{n + 1}}$-spaces, $ n \geqslant 0$, Lecture Notes in Math., vol. 533, Springer-Verlag, Berlin and New York, 1967, pp. 207-351.
  • [4] F. R. Cohen and D. Handel, 𝑘-regular embeddings of the plane, Proc. Amer. Math. Soc. 72 (1978), no. 1, 201–204. MR 524347, 10.1090/S0002-9939-1978-0524347-1
  • [5] David Handel, Obstructions to 3-regular embeddings, Houston J. Math. 5 (1979), no. 3, 339–343. MR 559974
  • [6] -, Some existence and non-existence theorems for k-regular maps, Fund. Math. (submitted).
  • [7] David Handel and Jack Segal, On 𝑘-regular embeddings of spaces in Euclidean space, Fund. Math. 106 (1980), no. 3, 231–237. MR 584495
  • [8] J. P. May, The geometry of iterated loop spaces, Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271. MR 0420610
  • [9] -, The homology of $ {E_\infty }$-spaces, Lecture Notes in Math., vol. 533, Springer-Verlag, Berlin and New York, 1967, pp. 1-68.
  • [10] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR 0440554
  • [11] Stewart Priddy, Dyer-Lashof operations for the classifying spaces of certain matrix groups, Quart. J. Math. Oxford Ser. (2) 26 (1975), no. 102, 179–193. MR 0375309
  • [12] Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Translated from the Romanian by Radu Georgescu. Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. MR 0270044

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55S99, 41A50

Retrieve articles in all journals with MSC: 55S99, 41A50


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1979-0521896-8
Keywords: k-regular maps, configuration spaces, Dyer-Lashof operations, Stiefel-Whitney classes
Article copyright: © Copyright 1979 American Mathematical Society