Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Morita equivalence of simple Noetherian rings

Author: J. T. Stafford
Journal: Proc. Amer. Math. Soc. 74 (1979), 212-214
MSC: Primary 16A19
MathSciNet review: 524287
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a simple Noetherian ring of finite global dimension and Krull dimension one is Morita equivalent to a domain.

References [Enhancements On Off] (What's this?)

  • [1] C. Faith, Algebra: rings, modules and categories. I, Springer-Verlag, Berlin and New York, 1973. MR 0366960 (51:3206)
  • [2] A. W. Goldie, Rings with maximum condition, Mimeographed notes, Yale University, 1961.
  • [3] J. T. Stafford, Stable structure of noncommutative Noetherian rings. II, J. Algebra 52 (1978), 218-235. MR 0498680 (58:16763)
  • [4] -, A simple Noetherian ring not Morita equivalent to a domain, Proc. Amer. Math. Soc. 68 (1978), 159-160. MR 0466210 (57:6090)
  • [5] R. Walker, Local rings and normalizing sets of elements, Proc. London Math. Soc. (3) 24 (1972), 27-45. MR 0294399 (45:3469)
  • [6] A. E. Zalesskiĭ and O. M. Neroslavskiĭ, There exist simple Noetherian rings with zero divisors but without idempotents, Comm. Algebra 5 (1977), 231-244. (Russian) MR 0439880 (55:12761)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A19

Retrieve articles in all journals with MSC: 16A19

Additional Information

Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society