ON THE PROBLEM OF PARTITIONING
\{1, 2, \ldots, n\} INTO SUBSETS HAVING EQUAL SUMS

H. JOSEPH STRAIGHT AND PAUL SCHILLO

ABSTRACT. Let \(N \) denote the set of natural numbers and let \(Z_n = \{1, 2, \ldots, n\} \). For \(S \) a finite subset of \(N \), let \(\sigma S \) denote the sum of the elements in \(S \). Then \(\sigma Z_n = n(n + 1)/2 \). Suppose \(n(n + 1) = 2st \), where \(s \) and \(t \) are integers and \(t > n \). We show that \(Z_n \) can be partitioned into \(T_1 \cup T_2 \cup \ldots \cup T_s \) such that \(\sigma T_i = t \), for \(1 < i < s \). Such a partition is called an \((s, t)\)-partition of \(Z_n \).

A graph \(G \) having \(n(n + 1)/2 \) edges is said to be path-perfect if the edge set of \(G \) can be partitioned as \(E_1 \cup E_2 \cup \ldots \cup E_s \) so that \(E_i \) induces a path of length \(i \), for \(1 < i < n \). Suppose \(p \) and \(n \) are positive integers and \(r \) is an even positive integer with \(p > r + 1 \) and \(pr = n(n + 1) \). The existence of an \((r/2, p)\)-partition of \(Z_n \) is used to show the existence of an \(r \)-regular path-perfect graph \(G \) having \(p \) vertices and \(n(n + 1)/2 \) edges.

1. Introduction. Let \(N \) denote the set of natural numbers and let \(Z_n = \{1, 2, \ldots, n\} \). For \(S \) a finite subset of \(N \), let \(\sigma S \) denote the sum of the elements belonging to \(S \).

It is well known that \(\sigma Z_n = n(n + 1)/2 \). We consider the following question. Suppose \(n(n + 1) = 2st \), where \(s \) and \(t \) are integers and \(t > n \). Do there exist \(s \) pairwise disjoint subsets of \(Z_n \), say \(T_1, T_2, \ldots, T_s \), such that \(Z_n = T_1 \cup T_2 \cup \ldots \cup T_s \) and \(\sigma T_i = t \), for each \(i, 1 < i < s \)? If so, then the partition \(T_1 \cup T_2 \cup \ldots \cup T_s \) will be called an \((s, t)\)-partition of \(Z_n \). As an example, let \(n = 20, s = 6, \) and \(t = 35 \). The subsets \(T_1 = \{15, 20\}, T_2 = \{16, 19\}, T_3 = \{17, 18\}, T_4 = \{4, 8, 9, 14\}, T_5 = \{5, 7, 10, 13\}, \) and \(T_6 = \{1, 2, 3, 6, 11, 12\} \) form a \((6, 35)\)-partition of \(Z_{20} \).

This number theoretical problem arose in the context of a problem in graph theory. In [3], Straight considered the question of the existence of regular path-perfect graphs, a concept to be explained in §3. While doing so, he was able to find a partial solution to the problem concerning \((s, t)\)-partitions of \(Z_n \). He posed the problem during a talk at SUNY-Fredonia, and from there it was communicated to Schillo, who found a complete solution.

In §2 we show that an \((s, t)\)-partition of \(Z_n \) exists whenever \(n(n + 1) = 2st \). In §3 this result is then applied to the question of the existence of even-regular, path-perfect graphs.

2. The main result.

THEOREM 1. Let \(n \) be a positive integer and suppose \(n(n + 1) = 2st \), where \(s \) and \(t \) are integers and \(t > n \). Then there exists an \((s, t)\)-partition of the set \(Z_n \).

Received by the editors April 20, 1978.

AMS (MOS) subject classifications (1970). Primary 10A45; Secondary 05C35.

© 1979 American Mathematical Society
0002-9939/79/0000-0205/$01.75
Proof. We employ induction on \(n \). It is easy to verify the theorem for small values of \(n \). Now let \(n \) be some fixed positive integer and suppose the theorem is true whenever \(\hat{n}(\hat{n} + 1) = 2\hat{s}\hat{t}, \hat{t} \geq \hat{n}, \) and \(\hat{n} < n \). Let \(s \) and \(t \) be given with \(n(n + 1) = 2st \) and \(t > n \). We wish to find sets \(T_1, T_2, \ldots, T_s \) forming an \((s, t)\)-partition of \(\mathbb{Z}_n^n \).

Case 1A. Suppose \(n < t < 2n \) and \(t \) is even. Let \(m = (2n - t)/2 \) and for \(1 \leq i < m \), let \(T_i = \{n - i + 1, t - n + i - 1\} \). Note that the elements of \(\mathbb{Z}_n^n \) not belonging to \(T_1 \cup T_2 \cup \ldots \cup T_m \) form the set \(\mathbb{Z}_{t-n-1} \cup \{t/2\} \). Now \(\sigma_{\mathbb{Z}_{t-n-1}} = (t/2)(t - 2n + 2s - 1) \) and \(t - n - 1 < n \). Thus, by the induction hypothesis, there exists a \((t - 2n + 2s - 1, t/2)\)-partition of \(\mathbb{Z}_{t-n-1} \). Combine one of the sets in this partition with \(\{t/2\} \) to obtain \(T_{m+1} \), and unite the rest two at a time to form \(T_{m+2}, \ldots, T_s \). Then \(T_1 \cup T_2 \cup \ldots \cup T_s \) is an \((s, t)\)-partition of \(\mathbb{Z}_n^n \).

Case 1B. Suppose \(n < t < 2n \) and \(t \) is odd. Let \(k = (2n - t + 1)/2 \) and for \(1 \leq i < k \), let \(T_i = \{n - i + 1, t - n + i - 1\} \). After forming \(T_1, \ldots, T_k \), the subset of \(\mathbb{Z}_n^n \) which remains is \(\mathbb{Z}_{t-n-1} \). Now \(\sigma_{\mathbb{Z}_{t-n-1}} = ((t - 1 - 2n + 2s)/2, t) \)-partition of \(\mathbb{Z}_{t-n-1} \). Letting the elements of this partition be \(T_{k+1}, \ldots, T_s \), we obtain an \((s, t)\)-partition of \(\mathbb{Z}_n^n \).

Case 2. Suppose \(t > 2n \). Using the induction hypothesis, let \(T_1' \cup T_2' \cup \ldots \cup T_s' \) be an \((s, t - 2n + 2s - 1)\)-partition of \(\mathbb{Z}_{n-2s} \). Next let \(T_i = T_i' \cup \{n - 2s + i, n - i + 1\} \) for \(1 \leq i < s \). Then \(T_1 \cup T_2 \cup \ldots \cup T_s \) is an \((s, t)\)-partition of \(\mathbb{Z}_n^n \).

Therefore, by induction, the theorem is proven. \(\square \)

3. **An application to graph theory.** Let \(K_n \) and \(P_n \) denote the complete graph of order \(n \) and the path of length \(n \), respectively. A factorization of a graph \(G \) is a partition of its edge set. The subgraphs of \(G \) induced by the elements in the partition are called factors. In [1], Fink and Straight consider the problem of factoring a graph into paths of different lengths. Specifically, they define a graph \(G \) having size \(n(n + 1)/2 \) to be path-perfect if the edge set of \(G \) can be partitioned as \(E_1 \cup E_2 \cup \ldots \cup E_n \), so that \(E_i \) induces \(P_i \), for \(1 < i < n \). For example, the Petersen graph, shown in Figure 1, is path-perfect. To see this, let \(P_1 = v_7v_8, P_2 = v_4v_9v_{10}, P_3 = v_3v_1v_8v_9, P_4 = v_3v_7v_8v_{10}v_2 \) and \(P_5 = v_1v_2v_3v_4v_5v_6 \).

Note also that the Petersen graph is 3-regular (each vertex is incident with 3 edges). If \(G \) is an \(r \)-regular graph of order \(p \) and size \(n(n + 1)/2 \), then

\[pr = n(n + 1). \]

Thus \(r \) must divide \(n(n + 1) \). Considering the case where \(r \) divides \(n \) or \(n + 1 \), Straight [3] showed the following.

Theorem A. Let \(r \) be an odd positive integer. There exists an \(r \)-regular path-perfect graph of order \(m(mr + 1) \) if, and only if, \(m \) equals 1. Also, there exists an \(r \)-regular path-perfect graph of order \(m(mr - 1) \) if, and only if, \(m \) equals 2.
If \(r \) is even, then equation (1) can be written as \(p(r/2) = n(n + 1)/2 \). We now wish to apply Theorem 1 with \(t = p \) and \(s = r/2 \) to help prove the following.

Theorem 2. Let \(p \) and \(n \) be positive integers and let \(r \) be an even positive integer such that \(p > r + 1 \) and \(pr = n(n + 1) \). Then there exists an \(r \)-regular path-perfect graph \(G \) of order \(p \) and size \(n(n + 1)/2 \).

Proof. Let \(p, n \) and \(r \) be given satisfying the conditions of the theorem. We shall construct \(G \).

It is a well-known result in graph theory (see [2, p. 89]) that if \(p \) is even, \(K_p \) can be factored into \((p - 2)/2\) hamiltonian cycles and a factor which is 1-regular, while if \(p \) is odd, \(K_p \) can be factored into \((p - 1)/2\) hamiltonian cycles. In either case, we may combine \(r/2 \) of these cycles, call them \(C_1, C_2, \ldots, C_{r/2} \), to form an \(r \)-regular spanning subgraph of \(K_n \). This subgraph will be \(G \).

To show that \(G \) is path-perfect, apply Theorem 1 with \(s = r/2 \) and \(t = p \). For \(1 < i < s \), the subset \(T_i \) of \(Z_n \) given by the theorem tells us how to partition \(C_i \) into paths; that is, the elements of \(T_i \) are the lengths of the paths.

Theorem 2 answers the question of the existence of \(r \)-regular path-perfect graphs when \(r \) is even. Theorem A can be applied when \(r \) is odd and \(r \) divides \(n \) or \(r \) divides \(n + 1 \). In particular, one can apply Theorem A whenever \(r \) is a power of some odd prime. This leaves one unsolved case—when \(r \) is odd and \(r \) divides neither \(n \) nor \(n + 1 \). For example, we do not know whether there exists a 15-regular path-perfect graph of order 28 and size \(20(21)/2 = 210 \).

References