Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The stability of the equation $ f(x+y)=f(x)f(y)$


Authors: John Baker, J. Lawrence and F. Zorzitto
Journal: Proc. Amer. Math. Soc. 74 (1979), 242-246
MSC: Primary 39B50
MathSciNet review: 524294
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if f is a function from a vector space to the real numbers satisfying

$\displaystyle \vert f(x + y) - f(x)f(y)\vert < \delta $

for some fixed $ \delta $ and all x and y in the domain, then f is either bounded or exponential.

References [Enhancements On Off] (What's this?)

  • [1] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222–224. MR 0004076

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 39B50

Retrieve articles in all journals with MSC: 39B50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0524294-6
Keywords: Functional equation, stability
Article copyright: © Copyright 1979 American Mathematical Society