Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Generalized parabolic functions using the Perron-Wiener-Brelot method


Author: Neil Eklund
Journal: Proc. Amer. Math. Soc. 74 (1979), 247-253
MSC: Primary 35K20
DOI: https://doi.org/10.1090/S0002-9939-1979-0524295-8
MathSciNet review: 524295
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let L be a linear, second order parabolic operator in divergence form and let U be a bounded domain in $ {E^{n + 1}}$. The Dirichlet problem for $ Lu = 0$ is solved in U using the Perron-Wiener-Brelot method.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35K20

Retrieve articles in all journals with MSC: 35K20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0524295-8
Keywords: Parabolic PDE, Perron-Wiener-Brelot solution, subsolutions.ams78
Article copyright: © Copyright 1979 American Mathematical Society