Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Infinite dimensional $ L$-spaces do not have preduals of all orders


Author: Thomas E. Armstrong
Journal: Proc. Amer. Math. Soc. 74 (1979), 285-290
MSC: Primary 46B10
MathSciNet review: 524301
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if E is an infinite dimensional Banach space with first dual E', second dual E", and nth dual $ {E^{[n]}}$ and if $ {E^{[n]}}$ is either an L- or M-space all duals are either L- or M-spaces except possibly E which could be a Lindenstrauss space. If E is an L- or M-space there is an integer $ n(E)$ so that if $ m > n(E)$ there is no Banach space F with $ E = {F^{[m]}}$. The linear isomorphic analogues to these isometric results are also established. In particular if E is an $ {\mathcal{L}_1}$ or $ {\mathcal{L}_\infty }$ space there is an integer $ \bar n(E)$ so that E is not linearly isomorphic to $ {F^{[m]}}$ for any Banach space F when $ m > \bar n(E)$.


References [Enhancements On Off] (What's this?)

  • [1] Erik M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, New York-Heidelberg, 1971. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57. MR 0445271
  • [2] Michèle Capon, Étude des espaces 𝐴(𝐾) qui sont des duaux, Math. Scand. 32 (1973), 225–241 (1974) (French). MR 0338728
  • [3] A. J. Ellis, The duality of partially ordered normed linear spaces, J. London Math. Soc. 39 (1964), 730–744. MR 0169020
  • [4] I. M. Gelfand, Abstrakte Funktionen und lineare Operatoren, Mat. Sb. 46 (1938), 235-286.
  • [5] R. Haydon, On dual $ {L^1}$-spaces and injective bidual Banach spaces (unpublished).
  • [6] Robert C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 174–177. MR 0044024
  • [7] Joram Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. No. 48 (1964), 112. MR 0179580
  • [8] Joram Lindenstrauss, A remark on \cal𝐿₁ spaces, Israel J. Math. 8 (1970), 80–82. MR 0259582
  • [9] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
  • [10] A. Pełczyński, On Banach spaces containing 𝐿₁(𝜇), Studia Math. 30 (1968), 231–246. MR 0232195
  • [11] A. Pełczyński, On the isomorphism of the spaces 𝑚 and 𝑀, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958), 695–696. MR 0102727
  • [12] Haskell P. Rosenthal, On complemented and quasi-complemented subspaces of quotients of 𝐶(𝑆) for Stonian 𝑆, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1165–1169. MR 0231185
  • [13] Haskell P. Rosenthal, On injective Banach spaces and the spaces 𝐿^{∞}(𝜇) for finite measure 𝜇, Acta Math. 124 (1970), 205–248. MR 0257721
  • [14] Zbigniew Semadeni, Banach spaces of continuous functions. Vol. I, PWN—Polish Scientific Publishers, Warsaw, 1971. Monografie Matematyczne, Tom 55. MR 0296671

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B10

Retrieve articles in all journals with MSC: 46B10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1979-0524301-0
Keywords: L-space, M-space, Lindenstrauss space, dual, predual, simplex, injective Banach space, topological dimension
Article copyright: © Copyright 1979 American Mathematical Society