INFINITE DIMENSIONAL L-SPACES
DO NOT HAVE PREDUALS OF ALL ORDERS

THOMAS E. ARMSTRONG

Abstract. It is shown that if E is an infinite dimensional Banach space with first dual E', second dual E'', and nth dual $E^{[n]}$ and if $E^{[m]}$ is either an L- or M-space all duals are either L- or M-spaces except possibly E which could be a Lindenstrauss space. If E is an L- or M-space there is an integer $n(E)$ so that if $m > n(E)$ there is no Banach space F with $E = F^{[m]}$. The linear isomorphic analogues to these isometric results are also established. In particular if E is an L_1 or L_∞ space there is an integer $n(E)$ so that E is not linearly isomorphic to $F^{[m]}$ for any Banach space F when $m > n(E)$.

Introduction. Consider a sequence $(E_j: j = 1, \ldots, n)$ of Banach spaces with $E_{j+1}' = E_j$ for $j = 1, \ldots, n-1$. We call E_2 a predual of E_1 and E_2 a pre-bidual of E_1. In general we say that E_{j+1} is a predual of E_j of order j and denote this fact by the equation $E_j^{[j]} = E_1$. Is it possible that there exists, for a given Banach space E, an infinite sequence $(E_j: j \in \mathbb{N})$ of Banach spaces with $E_1 = E$ and with E_j the dual of E_{j+1} for all $j \in \mathbb{N}$? If E is reflexive, in particular if E is finite dimensional, this is easily seen to be true taking $E_j = E'$ if j is even and $E_j = E$ if E is odd. James, [6], constructs an example of a nonreflexive separable Banach space E isometric with its bidual. For such a space E the desired sequence $(E_j: j \in \mathbb{N})$ is readily produced. If E is required to be an infinite dimensional L-space the existence of such a sequence is impossible. This follows from the main result of this paper which asserts the existence of an integer, $n(E)$, for any infinite dimensional L-space E, such that E has no predual of order $n(E)$. If E is an L-space it is known that $E^{[2n]}$ is also an L-space for all n. Thus, for all n there are L-spaces E with $n(E)$ arbitrarily large. That $n(E)$ may be 0 was established by Gelfand, [4], for $E = L^1(\mu)$ where μ is Lebesgue measure on $[0, 1]$ or on $(-\infty, \infty)$, and by Pelczyński, [9], for μ σ-finite but not purely atomic. Rosenthal, [13], establishes that when Γ is a set whose cardinality, $\text{card}(\Gamma)$, satisfies $\aleph_0 < \text{card}(\Gamma) < 2^\varepsilon$ then $l^\infty(\Gamma)$ does not have a predual of order 3 so that $l^1(\Gamma)$, although a dual space, is not a bidual space. Hence, $n(l^1(\Gamma)) = 1$. We shall remove the cardinality restriction Γ in Proposition 2. Thus, if μ is a σ-finite measure and $E = L^1(\mu)$ then $n(E) = 0$ unless μ is purely atomic in which case $n(E) = 1$.

Received by the editors November 22, 1976 and, in revised form, May 27, 1977 and May 1, 1978.

Key words and phrases. L-space, M-space, Lindenstrauss space, dual, predual, simplex, injective Banach space, topological dimension.

Supported by National Science Foundation Grant MCS-74-05796-A02.

© 1979 American Mathematical Society

0002-9939/79/0000-0215/02.50

285
This appears to be the extent of precise knowledge of \(n(E) \) although we shall give a method for obtaining crude estimates of \(n(E) \) for more general \(L \)-spaces.

1. The preduals of order 2 of an \(L \)-space. In order to proceed we need to characterize Banach spaces whose \(n \)th duals are \(L \)-spaces. It is well known that the dual of an \(L \)-space (\(M \)-space) is an \(M \)-space with unit \((L \)-space).

If \(F \) is an \(M \)-space which has a predual \(E \) then \(E \) considered as a subspace of \(F' \) is unique and is an \(L \)-space with the induced ordering from the \(L \)-space \(F' \). If \(E \) is an \(L \)-space with predual \(F \) then \(F \) need not be an \(M \)-space with any ordering. Preduals of \(L \)-spaces \(E \) are called Lindenstrauss spaces. If a Lindenstrauss space, when given the induced ordering from \(E' \), is an ordered Banach space with \(E \) as order-dual it is called a simplex space. The classification of Lindenstrauss spaces is an unwieldy task which has absorbed the research of many persons. The situation for preduals of order \(n > 1 \) could be expected to be even more complicated. Somewhat surprisingly the situation is simplified enormously.

Proposition 1. Let \(E \) be a Banach space with \(E'' \) an \(L \)-space. \(E' \) is an \(M \)-space and \(E \) is an \(L \)-space.

Proof. Let \(B' \) and \(B'' \) be the unit balls of \(E' \) and \(E'' \). There is an extreme point \(e \) of \(B' \) since \(B' \) is \(\sigma(E', E) \) compact. Lindenstrauss, [7], shows that there is a compact Hausdorff space \(X \) and an isometry of \(E' \) onto a separating subspace \(F \) of \(C(X) \) such that \(e \) is mapped to 1 and such that \(F \) has the Riesz separation property with respect to the ordering of \(C(X) \). With the ordering and norm from \(C(X) \) \(F \) is order unit normed with order unit \(e \). Any such space is isometric and order isomorphic with the space \(A(\Delta) \) of continuous affine functions on a Choquet simplex \(\Delta \). Thus \(E' \) is isometric with \(A(\Delta) \). Capon shows, [2], that when \(A(\Delta) \) is a dual space then \(\Delta \) is a Bauer simplex. Thus, \(A(\Delta) \) is an \(M \)-space as is \(E' \). Since \(E \) is the predual of \(E' \) it is an \(L \)-space. □

Corollary 1-1. Let \(E \) be a Banach space with no predual. If, for some integer \(n \), \(E^{[n]} \) is an \(L \)- or an \(M \)-space then \(E \) is either an \(L \)-space or a Lindenstrauss space.

Remarks. 1. The following simple category theoretic proof of Proposition 1 is due to K. S. Lau. For terminology and justification of all statements we refer the reader to [14]. We work in the category \(\text{Ban}_1 \) of Banach spaces with linear contractions as morphisms. Any dual \(M \)-space is injective and all injective objects in this category are \(M \)-spaces. If \(E'' \) is an \(L \)-space \(E' \) is a retract of the injective \(E''' \) hence is itself injective. Thus \(E' \) is an \(M \)-space and \(E \) is an \(L \)-space.

2. One might conjecture that if \(E \) were a Banach space with \(E'' \) linearly isomorphic to an \(L \)-space then \(E \) would also be linearly isomorphic to an \(L \)-space. A counterexample appears in Chapter 5d of [9]. An example is given
of a Banach space E not even linearly isomorphic to a complemented subspace of an L-space yet with E' linearly isomorphic with $l^\infty(N)$. Severe restrictions on E are necessary in order that E'' linearly isomorphic to an L-space imply the existence of an L-space linearly isomorphic with E.

Proposition 2. If Γ is an infinite set then $n(l^1(\Gamma)) = 1$. In fact $l^1(\Gamma)$ is not even linearly isomorphic to a double conjugate space.

Proof. Let Ban be the category of Banach spaces with continuous linear maps as morphisms. Let E be a Banach space with E'' isomorphic to $l^1(\Gamma)$. E''' is isomorphic to $l^\infty(\Gamma)$ which is injective in Ban$_1$ hence E''' is injective in Ban. Consequently, E' is injective in Ban. Corollary 3 of [12], shows that E' contains a closed subspace l linearly isomorphic to $l^\infty(N)$. Since $l^\infty(N)$ is injective in Ban, l is complemented in E' hence E'' contains a complemented subspace linearly isomorphic to $l^\infty(N)$ hence to $l^\infty*(\beta N)$. Since βN is not scattered there is a nonatomic measure $\mu \in \mathcal{M}^+(\beta N)$, [13]. If \mathcal{B} is a separable μ-nonatomic σ-algebra of subsets of N the space $L^1(\beta N, \mathcal{B}, \mu)$ is isometric both with $L^1(\lambda_1)$ where λ_1 is Lebesgue measure on $[0, 1]$ and with the closed subspace \(|f \cdot \mu: f \in L^1(\beta N, \mathcal{B}, \mu)\) \(\subset \mathcal{M}(\beta N)\). Thus, $l^1(\Gamma)$ contains a closed subspace linearly isomorphic to $L^1(\lambda_1)$. Since any separable subspace of $l^1(\Gamma)$ is in $l^1(\Lambda)$ where $\Lambda \subset \Gamma$ has cardinality \aleph_0, $l^1(N)$ contains a subspace linearly isomorphic with $L^1(\lambda_1)$ which is impossible by the remarks on p. 123 of [9]. □

Proposition 3. If E is a triple conjugate space with E'' linearly isomorphic to an L-space then E is linearly isomorphic to an L-space.

Proof. Let $G''' = E$. E'' is an ℓ_1 space so by [9, II.5.8] G' and E are ℓ_1 spaces whereas G, G'', and E' are ℓ_∞ spaces. From [9, II.5.7] it follows that G'' is injective in Ban. Haydon, [5] shows that a bidual space injective in Ban is linearly isomorphic to $l^\infty(\Gamma)$ for some Γ. Thus, E is linearly isomorphic to the L-space $l^{\infty*}(\Gamma)$. □

Remarks. 3. If F is an ℓ_∞ space then F'' is a bidual space injective in Ban. Thus F'' and all higher even order duals of F are linearly isomorphic to M-spaces with the odd order duals linearly isomorphic to L-spaces. If E is an ℓ_1 space then $E[2n]$ is linearly isomorphic to an L-space and $E[2n-1]$ is linearly isomorphic to an M-space if $n > 2$.

2. The main result. To establish our result we will show that the dimension of an infinite dimensional L-space is strictly less than that of its bidual. As in [13], the dimension of an infinite dimensional Banach space F, $\dim(F)$, is the minimum cardinality of a total subset. Equivalently, $\dim(F)$ is the minimum cardinality of a dense subset, the minimum algebraic dimension of a dense subspace, or the maximum cardinality of a subset, T, distinct elements of which are at least a distance 2 apart.

To avoid cumbersome symbolism we shall denote, for cardinal numbers n
and m, n^m by either $\exp(n, m)$ or $\exp^i(n, m)$. If $k \in N$ we define, by induction, $\exp^{k+1}(n, m)$ to be $\exp(n, \exp^k(n, m))$.

If K is a compact Hausdorff space and $\mathcal{M}(K) = C'(K)$ then $\dim(\mathcal{M}(K)) > \text{card}(K)$ for the set $\delta(K) = \{\delta_x, x \in K\}$ is a subset such that $\|\delta_x - \delta_y\| = 2$ if $x \neq y$.

If m is a cardinal number we let $2^m = \{0, 1\}^m$ and set λ^m equal to the fair coin toss measure on 2^m. If λ_m is the Lebesgue product measure on $[0, 1]^m$ it is known that $L^1(\lambda_m)$ is isometric with $L^1(\lambda^m)$ hence with $L^1(\lambda^m)$ when m is infinite. When m is infinite $\dim(L^1(\lambda_m))$ is known to be m hence $\dim(L^1(\lambda^m)) = m$.

If $\{E_a\}$ is a family of Banach spaces, the l^1-direct sum, $(\Sigma_a E_a)_1$, is the set of all $e = (a_\alpha) \in \prod_a E_a$ such that $\|e\|_1 = \Sigma_a \|a_\alpha\| < \infty$. The l^∞-direct sum, $(\Sigma_a E_a)_\infty$, is the set of all $e = (a_\alpha) \in \prod_a E_a$ such that $\|e\|_\infty = \sup_a \|a_\alpha\| < \infty$. $(\Sigma_a E_a)_1$, with the norm $\|\cdot\|_1$, is a Banach space whose dual is $(\Sigma_a E_a)_\infty$ with the norm $\|\cdot\|_\infty$. The dimension of $(\Sigma_a E_a)_1$ is $\Sigma_a \dim(E_a)$ where $\dim(E_a)$ is the algebraic dimension of E_a if E_a is finite dimensional, for, if T_a is total in E_a for all a then $\bigcup_a T_a$ is total in $(\Sigma_a E_a)_1$. If Γ is a set with cardinality m then $\dim(l^1(\Gamma)) = m$ for $l^1(\Gamma)$ is an l^1-direct sum of one dimensional spaces.

If G is a Banach space with $m = \dim(F) > \aleph_0$ and T is a total subset of G then G' maybe considered to be a subset of $(-\infty, \infty)^T$. Since

$$\text{card}((-\infty, \infty)^T) = \exp(\exp(2, \aleph_0), m) = \exp(2, m)$$

when $m > \aleph_0$ then $\dim(G') < \text{card}(G') < \exp(2, m)$. Similarly, $\dim(G''') < \exp^3(2, m)$ and, in general, $\dim(G^{(k)}) < \exp^k(2, m)$ for all $k \in N$.

If $m > \aleph_0$ is the cardinal of a set Γ then $l^\infty(\Gamma)$ is isometric with $C(\beta\Gamma)$ hence

$$\dim(l^\infty(\Gamma)) = \dim(\mathcal{M}(\beta\Gamma)) > \text{card}(\beta\Gamma) = \exp^2(2, m).$$

Since $l^\infty(\Gamma) = [l^1(\Gamma)]^*$, $\dim(l^\infty(\Gamma)) = \exp^2(2, m)$.

If $m > \aleph_0$ then $C(\beta^m)$ is isometric to a subspace of $L^\infty(\lambda^m)$ hence $\mathcal{M}(\beta^m)$ is isometric to a quotient space of $L^\infty(\lambda^m)$. Thus $\dim(L^\infty(\lambda^m)) > \dim(C(\beta^m)) > \text{card}(\beta^m) = 2^m$.

Proposition 4. If E is an L-space with $m = \dim(E) > \aleph_0$ then $\exp(2, m) < \dim(E''') < \exp^3(2, m)$.

Proof. It is only necessary to show that $\exp(2, m) < \dim(E''')$.

We may assume by the Kakutani-Maharam Representation Theorem, [14], that $E = [l^1(\Gamma) + \Sigma_{\alpha \in \Lambda} L^1(\lambda^m)]_1$ with Γ and Λ sets and $m_\alpha > \aleph_0$ for $\alpha \in \Lambda$.

Case 1. $m = \text{card}(\Gamma)$. E contains $l^1(\Gamma)$ isometrically hence E'' contains $l^\infty(\Gamma)$ isometrically. Thus

$$\dim(E''') > \dim(l^\infty(\Gamma)) = \exp^2(2, m) > \exp(2, m).$$

Case 2. $m = m_\alpha$ for some $\alpha \in \Lambda$. E contains $L^1(\lambda^m)$ isometrically hence

$$\dim(E''') > \dim(L^\infty(\lambda^m)) > \exp(2, m).$$
Case 3. \(m > \text{card}(\Gamma) \) and \(m > m_\alpha \) if \(\alpha \in \Lambda \). In this case

\[
m = \sum_{\alpha \in \Lambda} m_\alpha = \sup_{\alpha \in \Lambda} m_\alpha.
\]

Regard each \(m_\alpha \) as the first ordinal of cardinal \(m_\alpha \). Well order \(\Lambda \) so that \(\{ m_\alpha : \alpha \in \Lambda \} \) is nondecreasing along \(\Lambda \). If the ordinals \(m \) and \(m_\alpha \) are regarded as sets then \(m \) is the increasing union \(\bigcup_{\alpha \in \Lambda} m_\alpha \). Let \(\pi_\alpha : \mathcal{2}^m \to \mathcal{2}^{m_\alpha} \) be the natural projection restricting a function on the set \(m \) to the smaller set \(m_\alpha \). Let \(\mathcal{G}_\alpha \) be the Borel sets in \(\mathcal{2}^{m_\alpha} \), let \(\mathcal{G} \) be the Borel sets in \(\mathcal{2}^m \) and let \(\mathcal{G}_\alpha = \pi_\alpha^{-1}(\mathcal{G}_\alpha) \) for \(\alpha \in \Lambda \). The set \(\{ \mathcal{G}_\alpha : \alpha \in \Lambda \} \) is an increasing family of \(\sigma \)-algebras. The inverse image of the measure \(\lambda^{m_\alpha} \) on \(\mathcal{G}_\alpha \) under \(\pi_\alpha \) is the restriction of \(\lambda^m \) to \(\mathcal{G}_\alpha \). Equivalently, \(\lambda^{m_\alpha} \) is the image of \(\lambda^m \) on \(\mathcal{2}^{m_\alpha} \) under \(\pi_\alpha \). The map \(j_\alpha : f \to f \circ \pi_\alpha \) yields an isometric embedding of \(L^1(\lambda^{m_\alpha}) \) into \(L^1(\lambda^m) \) with range \(L^1(\mathcal{2}^{m_\alpha}, \mathcal{G}_\alpha, \lambda^{m_\alpha}) \). If \(f = (f_\alpha) \in [\Sigma_{\alpha \in \Lambda} L^1(\lambda^{m_\alpha})]_1 \) define \(j(f) = \Sigma_{\alpha \in \Lambda} j_\alpha(f_\alpha) \). The map \(j \) is of norm 1 from \([\Sigma_{\alpha \in \Lambda} L^1(\lambda^{m_\alpha})]_1 \) into \(L^1(\lambda^m) \). If \(g \in L^1(\lambda^m) \) and \(\alpha \in \Lambda \) then \(E(g|\mathcal{G}_\alpha) \) is in the range of \(j_\alpha \) hence is in that of \(j \) and \(\|E(g|\mathcal{G}_\alpha)\| < \|g\| \). By the Martingale Convergence Theorem,

\[
\lim_{\alpha \in \Lambda} E(g|\mathcal{G}_\alpha) = g
\]

in \(L^1(\lambda^m) \). This shows that the image of the unit ball in \([\Sigma_{\alpha \in \Lambda} L^1(\lambda^{m_\alpha})]_1 \) is dense in that of \(L^1(\lambda^m) \). From this it follows that \(j \) is a surjection and that \(L^1(\lambda^m) \) is isometric to the quotient of \(\Sigma_{\alpha \in \Lambda} L^1(\lambda^{m_\alpha}) \) by \(\ker(j) \) hence that \(L^1(\lambda^m) \) is isometric to a quotient space of \(E^\infty \). Thus, \(L^1 \) is isometric with a quotient space of \(E^\infty \) and \(\dim(E^\infty) > \dim(L^1(\lambda^m)) \geq \exp(2, m) \).

\textbf{Corollary 4-1.} Let \(E \) be an \(L \)-space with \(m = \dim(E) > \aleph_0 \). If \(k \in \mathbb{N} \) then \(\exp^k(2, m) \leq \dim(E^{[2^k]}) \leq \exp^{2k}(2, m) \).

\textbf{Corollary 4-2.} If \(E \) is an \(L \)-space with \(\aleph_0 < \dim(E) \leq \exp^k(2, \aleph_0) \) for some \(k \in \mathbb{N} \) then \(n(E) < 2k \).

\textbf{Corollary 4-3.} If \(E \) is an \(L \)-space with \(\dim(E) \geq \exp^k(2, \aleph_0) \) for all \(k \in \mathbb{N} \) then \(E \) has no separable predual of any order.

\textbf{Corollary 4-4.} If \(F \) is an infinite dimensional Banach space and \(k \in \mathbb{N} \) with \(F^{[k]} \) linearly isomorphic to an \(L \)-space then \(F^{[n]} \) and \(F^{[m]} \) are not linearly isomorphic for any \(n \neq m \) in \(\mathbb{N} \).

This last corollary is very well known.

\textbf{Corollary 4-5.} If \(E \) is an infinite dimensional \(L \)-space it is nonreflexive.

\textbf{Proposition 5.} If \(E \) is an infinite dimensional \(L_1 \) (or \(L_\infty \) space) there is an integer \(\bar{n}(E) < \infty \) so that if \(F \) is linearly isomorphic to \(E \) then \(n(F) < \bar{n}(E) \).

\textbf{Proof.} Let \(C \) be the set of cardinal numbers \(m \) so that there is an \(L \)-space \(F \) with \(E \) linearly isomorphic to \(F^{[2n]} \) for some integer \(n \) and with \(m = \dim(F) \). Let \(M = \min(C) \). Let \(k_0 \) be an integer and let \(F_0 \) be an \(L \)-space with \(\dim(F_0) = M \) and with \(F_0^{[2k_0]} \) linearly isomorphic to \(E \). If \(G \) is any \(L \)-space
and j is an integer with $G^{[2j]}$ linearly isomorphic with E, Corollary 4-1 and the fact that $\dim(G) \geq M$ implies that
\[
\exp^j(2, M) < \dim(G^{[2j]}) = \dim(E) = \dim(F_0^{[2k_0]}) < \exp^{2k_0}(2, M).
\]
Thus $j < 2k_0$.

If E is not isomorphic with a fourth conjugate space then $\bar{n}(E) < 3$. Otherwise, if E is linearly isomorphic to $F^{[2k]}$ with $k > 2$ Proposition 3 and Remarks 3 show that $F^{[4]}$ is isomorphic to an L-space G. Thus $k - 2 < 2k_0$. Allowing for the possibility that F is a dual space it follows that $\bar{n}(E) < 2k_0 + 3$. □

Corollary 5-1. If E is an L-space (or M-space) then $n(E) < \infty$.

Acknowledgements. We wish to thank C. McCarthy for several helpful conversations.

We especially wish to thank Haskell Rosenthal who suggested the extension of the isometric results of this paper to linear isomorphism results and who provided most of the details of this extension.

References

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455