Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Infinite dimensional $ L$-spaces do not have preduals of all orders


Author: Thomas E. Armstrong
Journal: Proc. Amer. Math. Soc. 74 (1979), 285-290
MSC: Primary 46B10
DOI: https://doi.org/10.1090/S0002-9939-1979-0524301-0
MathSciNet review: 524301
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if E is an infinite dimensional Banach space with first dual E', second dual E", and nth dual $ {E^{[n]}}$ and if $ {E^{[n]}}$ is either an L- or M-space all duals are either L- or M-spaces except possibly E which could be a Lindenstrauss space. If E is an L- or M-space there is an integer $ n(E)$ so that if $ m > n(E)$ there is no Banach space F with $ E = {F^{[m]}}$. The linear isomorphic analogues to these isometric results are also established. In particular if E is an $ {\mathcal{L}_1}$ or $ {\mathcal{L}_\infty }$ space there is an integer $ \bar n(E)$ so that E is not linearly isomorphic to $ {F^{[m]}}$ for any Banach space F when $ m > \bar n(E)$.


References [Enhancements On Off] (What's this?)

  • [1] E. M. Alfsen, Convex compact sets and boundary integrals, Springer, New York, 1971. MR 0445271 (56:3615)
  • [2] M. Capon, Etude des espaces $ A(K)$ qui sont des duaux, Math. Scand. 32 (1973), 225-241. MR 0338728 (49:3492)
  • [3] A. J. Ellis, The duality of partially ordered normed linear spaces, J. London Math. Soc. 39 (1964), 730-744. MR 0169020 (29:6275)
  • [4] I. M. Gelfand, Abstrakte Funktionen und lineare Operatoren, Mat. Sb. 46 (1938), 235-286.
  • [5] R. Haydon, On dual $ {L^1}$-spaces and injective bidual Banach spaces (unpublished).
  • [6] R. C. James, A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177. MR 0044024 (13:356d)
  • [7] J. Lindenstrauss, Extensions of compact operators, Mem. Amer. Math. Soc. No. 48, 1964. MR 0179580 (31:3828)
  • [8] -, A remark on $ {\mathcal{L}_1}$-spaces, Israel J. Math. 8 (1970), 80-82. MR 0259582 (41:4220)
  • [9] J. Lindenstrauss and L. Tzafiri, Classical Banach spaces, Springer-Verlag, New York, 1973. MR 0415253 (54:3344)
  • [10] A. Pelczynski, On Banach spaces containing $ {L^1}(\mu )$, Studia Math. 30 (1968), 231-246. MR 0232195 (38:521)
  • [11] -, On the isomorphism of the spaces m and M, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 6 (1958), 695-696. MR 0102727 (21:1513)
  • [12] H. P. Rosenthal, On complemented and quasi-complemented subspaces of quotients of $ C(S)$ for Stonian S, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1165-1169. MR 0231185 (37:6740)
  • [13] -, On injective Banach spaces and the spaces $ {L^\infty }(\mu )$ for finite measures $ \mu $, Acta Math. 124 (1970), 205-248. MR 0257721 (41:2370)
  • [14] Z. Semadeni, Banach spaces of continuous functions. I, PWN-Polish Scientific, Warsaw, 1971. MR 0296671 (45:5730)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B10

Retrieve articles in all journals with MSC: 46B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0524301-0
Keywords: L-space, M-space, Lindenstrauss space, dual, predual, simplex, injective Banach space, topological dimension
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society