APPROXIMATION BY QUOTIENTS OF RATIONAL INNER FUNCTIONS

JOHN N. Mc Donald

ABSTRACT. Let \(u \) be a continuous unimodular function on the \(n \)-dimensional torus \(T^n \). It is shown that \(u \) can be uniformly approximated by quotients of rational inner functions.

Let \(T \) denote the unit circle. Let \(u \) be a Lebesgue measurable function on \(T \) such that \(|u| = 1 \) a.e. In [1] Douglas and Rudin proved that: given \(\varepsilon > 0 \), there exist inner functions \(g_1 \) and \(g_2 \) such that \(||u - g_1 g_2|| < \varepsilon \). (\(|| \cdot || \) indicates the essential-sup norm.) In this paper we establish a continuous analogue of Douglas and Rudin's result on the torus \(T^n \). We show that, if \(v \) is a continuous unimodular function on \(T^n \), then \(v \) can be uniformly approximated by quotients of rational inner functions.

Let \(I \) and \(I^+ \) denote, respectively, the set of integers and the set of nonnegative integers. Let \(\alpha = (a, b, \ldots, x) \in I^n \). We will use \(z^\alpha \) to denote the function defined on \(T^n \) by \(z^\alpha(\xi_1, \xi_2, \ldots, \xi_n) = \xi_1^a \xi_2^b \cdots \xi_n^x \). A finite linear combination of the \(z^\alpha \), where the \(\alpha \)'s are taken from \(I^n \), will be called a polynomial. If \(p = \sum c(\alpha)z^\alpha \) is a polynomial, we will use the notation \(\alpha(p) \) to denote the \(n \)-tuple \(\langle a_1(p), \ldots, a_n(p) \rangle \), where \(a_i(p) \) denotes the maximum \(i \)th component of any \(\alpha \) satisfying \(c(\alpha) \neq 0 \), and we will use \(\tilde{p} \) to indicate the polynomial \(\sum c(\alpha)z^{(\alpha(p)-\alpha)} \). Clearly, polynomials are also well defined over the closure of the open unit polydisk \(D^n \). A rational inner function on \(T^n \) is a function of the form \(cz^n(\tilde{p}/p) \), where \(c \) is a constant with \(|c| = 1 \), where \(\alpha \in I^n \), and where \(p \) is a polynomial having no zeros on the closure of \(D^n \). (Our definition of rational inner function is essentially the same as the one in Rudin's book [3, p. 110].) Finally, let \(U \) and \(U_0 \) denote, respectively, the set of continuous unimodular functions on \(T^n \) and the set of continuous unimodular functions on \(T^n \) having continuous logarithms. Note that \(U \) and \(U_0 \) are both groups under the usual operation of (pointwise) multiplication of complex-valued functions.

Proposition. For each \(u \in U \), there is an \(\alpha \in I^n \) such that \(z^\alpha u \in U_0 \).

Proof. It can be shown that the factor group \(U/U_0 \) is isomorphic to the first Čech cohomology group \(H^1 \) of \(T^n \), where the coefficients are taken from \(I \). (This can be done quickly by applying the Arens-Royden theorem; see [2].)
It is an exercise in algebraic topology to show that H^1 is isomorphic to I^n. Since $\{z^nU_0|\alpha \in I^n\}$ is a free abelian group having n generators, it follows that $U/U_0 = \{z^nU_0|\alpha \in I^n\}$.

Theorem. Let V denote the closure in the topology of uniform convergence of functions in U of the form gg_1, where g and g_1 are rational inner functions. Then $V = U$.

Proof. Since V is a subgroup of U and since $z^n \in V$ for every $\alpha \in I^n$, it follows from the proposition above that $U_0 \subseteq V$ implies $V = U$. Suppose $u \in U_0$, then $u = e^{if}$, where f is a real-valued continuous function on T^n. Hence, for each positive integer m, we have $u = (u_m)^n$, where $u_m = e^{if/m}$. By choosing m sufficiently large, the real part of u_m can be made uniformly close to 1. It follows that, in order to show that $U_0 \subseteq V$, it suffices to prove that every $u \in U_0$ of the form $u = (v)^2$, where $\Re v \geq \frac{1}{2}$, lies in V. Let $\varepsilon > 0$ be given. By the Stone-Weierstrass theorem there exists a polynomial p and an $a \in I_n^m$ such that $\|v - (z^a)p\| < \varepsilon/3$, $\|(1/v) - 1/(z^a)p\| < \varepsilon/3$, $\|z^a p\|^{-1} < 2$, and $\frac{1}{4} < \Re z^a p$. It follows that

$$\|v^2 - (z^a p)/(z^a p)\| < \|v^2 - v/(z^a p)\| + \|v/(z^a p) - (z^a p)/(z^a p)\| < \varepsilon.$$

Note that $z^a p = \bar{z}^{a(p)}$ on T^n. Hence, $(z^{a(p)}/(z^a p)) = z^{2a - a(p)} \bar{p}/p$. Thus, the proof will be completed if we can show that p has no zeros in the closure of D^n. Note that the function $\Re z^a p$ is well defined on the closure of D^n and is harmonic in each variable on D^n. It follows from the minimum principle for harmonic functions that $\Re z^a p > \frac{1}{4}$ on the closure of D^n. In particular p cannot have a zero on the closure of D^n.

References

Department of Mathematics, Arizona State University, Tempe, Arizona 85281