Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Dual $ A\sp{\ast} $-algebras of the first kind


Authors: David L. Johnson and Charles D. Lahr
Journal: Proc. Amer. Math. Soc. 74 (1979), 311-314
MSC: Primary 46H05; Secondary 46K15, 46L05
DOI: https://doi.org/10.1090/S0002-9939-1979-0524307-1
MathSciNet review: 524307
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let A be an $ {A^\ast}$-algebra of the first kind. It is proved that A has property P2 of Máté if and only if $ {A^2}$ is dense in A if and only if A possesses an (operator-bounded) approximate identity. Further, it is shown that an $ {A^\ast}$-algebra of the first kind having property P2 is a dual algebra if and only if it is a modular annihilator algebra. As applications, these results are used to strengthen certain theorems about Hilbert algebras.


References [Enhancements On Off] (What's this?)

  • [1] B. A. Barnes, Banach algebras which are ideals in a Banach algebra, Pacific J. Math. 38 (1971), 1-7. MR 0310640 (46:9738)
  • [2] -, Examples of modular annihilator algebras, Rocky Mountain J. Math. 1 (1971), 657-665. MR 0288581 (44:5777)
  • [3] J. Dixmier, Les $ {C^\ast}$-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1969. MR 0246136 (39:7442)
  • [4] E. Hewitt and K. A. Ross, Abstract harmonic analysis. II, Springer-Verlag, New York, Heidelberg, Berlin, 1970. MR 0262773 (41:7378)
  • [5] D. L. Johnson and C. D. Lahr, Multipliers and derivations of Hilbert algebras (to appear). MR 571262 (81f:46066)
  • [6] -, The trace class of an arbitrary Hilbert algebra (to appear).
  • [7] C. A. Jones, Approximate identities and multipliers, Ph. D. Dissertation, Dartmouth College, 1978.
  • [8] M. R. W. Kervin, The trace-class of a full Hilbert algebra, Trans. Amer. Math. Soc. 178 (1973), 259-270. MR 0318900 (47:7446)
  • [9] L. Máté, The Arens product and multiplier operators, Studia Math. 28 (1967), 227-234. MR 0215095 (35:5938)
  • [10] E. A. McCharen, A characterization of dual $ {B^\ast}$-algebras, Proc. Amer. Math. Soc. 37 (1973), 84. MR 0306927 (46:6048)
  • [11] C. E. Rickart, General theory of Banach algebras, 1974 reprint, R. E. Krieger, Huntington, New York, 1960. MR 0115101 (22:5903)
  • [12] H. H. Schaefer, Topological vector spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1971. MR 0342978 (49:7722)
  • [13] B. J. Tomiuk, Modular annihilator $ {A^\ast}$-algebras, Canad. Math. Bull. 15 (1972), 421-426. MR 0317060 (47:5608)
  • [14] -, Multipliers on dual $ {A^\ast}$-algebras, Proc. Amer. Math. Soc. 62 (1977), 259-265. MR 0433215 (55:6194)
  • [15] B. Yood, Ideals in topological rings, Canad. J. Math. 16 (1964), 28-45. MR 0158279 (28:1505)
  • [16] -, Hilbert algebras as topological algebras, Ark. Mat. 12 (1974), 131-151. MR 0380429 (52:1329)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46H05, 46K15, 46L05

Retrieve articles in all journals with MSC: 46H05, 46K15, 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0524307-1
Keywords: Approximate identity, multiplier, $ {A^\ast}$-algebra, dual algebra, modular annihilator algebra, Hilbert algebra
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society