MULTIPLIERS OF A^*-ALGEBRAS

DAVID L. JOHNSON AND CHARLES D. LAHR

Abstract. Let A be an A^*-algebra of the first kind with C^*-algebra completion \mathfrak{A}. It is known that if A is dual then A^2 is dense in A and the Banach algebras $M_L(A)$ and $M_L(\mathfrak{A})$ of left multipliers of A and \mathfrak{A} are algebra isomorphic. In this note it is proved that $M_L(A)$ and $M_L(\mathfrak{A})$ are topologically algebra isomorphic when A is an arbitrary A^*-algebra of the first kind such that A^2 is dense in A. As a consequence, it follows that every left multiplier of a replete Hilbert algebra A is automatically continuous.

1. Introduction. Let $(A, \| \cdot \|, | \cdot |)$ be an A^*-algebra where $\| \cdot \|$ is a Banach algebra norm, and $| \cdot |$ is the auxiliary norm [10, p. 181]. The Banach algebra $A = (A, \| \cdot \|)$ is of the first kind if A is a $*$-ideal of its C^*-algebra completion $\mathfrak{A} = (\mathfrak{A}, | \cdot |)$. In this case, since $\| \cdot \|$ majorizes $| \cdot |$ [10, Corollary 4.1.16], A is a Banach \mathfrak{A}-bimodule (i.e., there exists $K > 0$ such that $\|wa\| \leq K|w|\|a\|$, $\|aw\| \leq K\|a\|\|w\|$, for all $a \in A$, $w \in \mathfrak{A}$ [3, Proposition 2.2, Theorem 2.3]). A left multiplier of an algebra B is a linear map $T: B \to B$ such that $T(xy) = (Tx)y$, for all $x, y \in B$; every left multiplier of a semi-simple Banach algebra is continuous [6]. For A (resp., \mathfrak{A}) as above, let $M_L(A)$ (resp., $M_L(\mathfrak{A})$) be the Banach algebra of all (automatically continuous, since A, \mathfrak{A} are semisimple [10, Theorem 4.1.19]) left multipliers of A (resp., \mathfrak{A}).

Now, if A is a dual A^*-algebra of the first kind, then $A^2 = \text{sp}\{ab: a, b \in A\}$ is dense in A [10, Corollary 2.8.3], and $M_L(A)$, $M_L(\mathfrak{A})$ are algebra isomorphic [12, Theorem 5.1], [11, Theorem 4.2]. In this paper, we show that if A is an arbitrary A^*-algebra of the first kind with A^2 dense in A, then $M_L(A)$ is topologically algebra isomorphic to $M_L(\mathfrak{A})$. As an application of this result, it is proved that every left multiplier of a replete Hilbert algebra $A = (A, \| \cdot \|)$ is automatically continuous. This result appears to be new even for full Hilbert algebras. In general, the Hilbert space norm $\| \cdot \|$ is not an algebra norm on A, nor is A complete in this norm. The authors know of no other example of an automatic continuity result for multipliers of a non-Banach nonnormed algebra.

2. Main result. As in [3], we denote the spectrum of an element x in a Banach algebra B by $\text{Sp}_B(x)$ and its spectral radius by $r_B(x)$.

Theorem 1. Let A be an A^*-algebra of the first kind with A^2 dense in A, and...
let \(\mathcal{A} \) be the C*-algebra completion of \(A \). Then \(M_L(A) \) is topologically algebra isomorphic to \(M_L(\mathcal{A}) \).

Proof. First, since \(A^2 \) is dense in \(A \), the Hewitt-Cohen factorization theorem \([5, \text{Theorem 32.22}]\) implies that \(A = \mathcal{A} \cdot A = \{ wa : w \in \mathcal{A}, a \in A \} \).

Thus, if \(T \in M_L(\mathcal{A}) \), then \(T' = T|_A \) maps \(A \) into \(A \) (since \(T'(A) = T(A) = T(\mathcal{A} \cdot A) = T(\mathcal{A}) \cdot A \subseteq \mathcal{A} \cdot A = A \)); hence, \(T' \in M_L(A) \). Next, because \(A \) is a dense \(*\)-ideal of \(\mathcal{A} \) and \(\mathcal{A} \cdot A = A \), \(A \) possesses a (left) approximate identity \(\{ u_a \}_a \) such that \(|u_a| \leq 1 \), for all \(a [4, \text{Proposition 1.7.2}] \). Therefore, for each \(a \) in \(A \),

\[
\| T'a \| = \lim_a \| T'(u_a a) \| = \lim_a \| (Tu_a)a \|
\leq \sup_a K|Tu_a| \|a\| < K\|T\| \|a\|;
\]

whence \(\| T' \| < K\|T\| \). Now, \(A \) is dense in \(\mathcal{A} \), so the continuous linear map \(T \mapsto T' \) from \(M_L(\mathcal{A}) \) into \(M_L(A) \) is a vector space isomorphism, and is easily seen to be an algebra isomorphism as well. Thus, it remains only to show that the map \(T \mapsto T' \) is surjective.

Since \(A \) is a left ideal of \(\mathcal{A} \) and of \(M_L(A) \), \(\text{Sp}_\mathcal{A}(a) \cup \{ 0 \} = \text{Sp}_{M_L(A)}(a) \cup \{ 0 \} \) [3, proof of Proposition 4.1]; hence \(\nu_\mathcal{A}(a) = \nu_{M_L(A)}(a) \), for each \(a \) in \(A \). Consequently, if \(L_a \) denotes left multiplication by \(a \) in \(M_L(A) \), then

\[
|a|^2 = |a^*a| = \nu_\mathcal{A}(a^*a) = \nu_{M_L(A)}(a^*a) < \| L_a^*a \| = \sup \{ \| a^*ab \| : b \in A, \| b \| < 1 \}
\leq K|a^*| \sup \{ \| ab \| : b \in A, \| b \| < 1 \} = K|a| \| L_a \|,
\]

and so \(|a| < K\|L_a\| < K^2|a| \), for all \(a \) in \(A \). Now, let \(S \in M_L(A) \) be given. Then, for each \(a \) in \(A \),

\[
|Sa| < K\|L_{Sa}\| = K\|SL_a\| < K\|S\| \| L_a \| < K^2\|S\| \|a\|;
\]

therefore, \(S \) extends uniquely to a continuous linear operator \(T \) on \(\mathcal{A} \) with \(\| T \| < K^2\|S\| \). It follows immediately that \(T \in M_L(\mathcal{A}) \) and that \(T' = S \). \(\square \)

Observe that if the \(A^* \)-algebra \(A \) is an isometric Banach \(\mathcal{A} \)-bimodule (i.e., if the constant \(K = 1 \)), then \(M_L(A) \) is isometrically algebra isomorphic to \(M_L(\mathcal{A}) \). In addition, under the assumptions of Theorem 1, it follows mutatis mutandis that the Banach algebras \(M_R(A) \), \(M_R(\mathcal{A}) \) of all right multipliers of \(A \), \(\mathcal{A} \) are topologically algebra isomorphic. This fact, together with Theorem 1, implies that the Banach algebras \(M(A) \), \(M(\mathcal{A}) \) of all double multipliers of \(A \), \(\mathcal{A} \) are also topologically algebra isomorphic.

3. Application. If \(A = (A, \| \cdot \|) \) is a replete Hilbert algebra (in particular, every full Hilbert algebra is replete; see [7], [13] for definitions), then in the so-called Rieffel norm \(\| \cdot \|_r, A_r = (A, \| \cdot \|_r) \) is an \(A^* \)-algebra of the first kind such that \(A_r^2 \) is dense in \(A \) [7, Theorem 4.1]. Thus, Theorem 1 applies, and yields the following result. Let \(M_L(A) \) be the Banach algebra of all continuous left multipliers of \(A = (A, \| \cdot \|) \).
Theorem 2. If \(A \) is a replete Hilbert algebra with C*-algebra completion \(\mathcal{A} = (\mathcal{A}, | \cdot |) \), and \(A_r = (A, \| \cdot \|_r) \), then \(M_L(A) = M_L(A_r) \) as Banach algebras. Hence, every left multiplier of \(A \) is automatically continuous.

Proof. First, since \(A = A_r \) as abstract algebras, and \(A_r \) is a semisimple Banach algebra, \(M_L(A) \subseteq M_L(A_r) \) set-theoretically. On the other hand, \(A_r \) is an isometric Banach \(\mathcal{A} \)-bimodule; hence, \(M_L(A_r) \) is isometrically algebra isomorphic to \(M_L(\mathcal{A}) \) by Theorem 1. Further, since \(\mathcal{A} \subseteq \mathcal{B}(H) \), the bounded linear operators on the Hilbert space completion \(H = (H, \| \cdot \|) \) of \(A = (A, \| \cdot \|_r) \), it follows from [1, Proposition 4.2] that \(M_L(\mathcal{A}) \) is isometrically algebra isomorphic to a closed subalgebra of \(\mathcal{B}(H) \). Hence, every left multiplier \(T \) in \(M_L(A_r) \) is continuous on \(A = (A, \| \cdot \|) \) (i.e., \(M_L(A_r) \subseteq M_L(A) \)) and, in addition, the Banach algebras \(M_L(A) \) and \(M_L(A_r) \) have the same norm. Finally, if \(T \) is a left multiplier of \(A = A_r \), then (since \(A_r \) is semisimple) \(T \in M_L(A_r) = M_L(A) \). \(\square \)

In an earlier manuscript [8], the authors gave a proof of Theorem 2 in the spirit of [9], [2]. We would like to thank G. F. Bachelis for his helpful comments regarding [8], consideration of which eventually led to Theorem 1 in its present generality.

References

8. _____, Left multipliers of a replete Hilbert algebra (preprint).

Department of Mathematics, University of Southern California, Los Angeles, California 90007

Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755