Pseudocompactness and closed subsets of products

Author:
James E. Joseph

Journal:
Proc. Amer. Math. Soc. **74** (1979), 338-342

MSC:
Primary 54D30; Secondary 54C30, 54C99

DOI:
https://doi.org/10.1090/S0002-9939-1979-0524313-7

MathSciNet review:
524313

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper contains several new characterizations of arbitrary pseudocompact spaces, i.e. spaces characterized by the property that all continuous real-valued functions on the space are bounded. These characterizations parallel known characterizations of Hausdorff spaces including the useful and well-known result that a space *Y* is Hausdorff if and only if whenever and are continuous functions on a common domain into *Y* which agree on a dense subset of the domain.

**[BCM]**R. W. Bagley, E. H. Connell and J. D. McKnight, Jr.,*On properties characterizing pseudocompact spaces*, Proc. Amer. Math. Soc.**9**(1958), 500-506. MR**0097043 (20:3523)****[C]**W. W. Comfort,*A nonpseudocompact product space whose finite subproducts are pseudocompact*, Math. Ann.**170**(1967), 41-44. MR**35**#965. MR**0210070 (35:965)****[F]**Z. Frolík,*The topological product of two pseudocompact spaces*, Czechoslovak Math. J.**10**(1960), 339-349. MR**22**#7099. MR**0116304 (22:7099)****[GJ]**L. Gillman and M. Jerison,*Rings of continuous functions*, Van Nostrand, New York, 1960. MR**22**#6994. MR**0116199 (22:6994)****[G1]**I. Glicksberg,*Stone-Čech compactifications of products*, Trans. Amer. Math. Soc.**90**(1959), 369-382. MR**21**#4405. MR**0105667 (21:4405)****[G2]**-,*The representation of functionals by integrals*, Duke Math. J.**19**(1952), 253-261. MR**14**, 288. MR**0050168 (14:288d)****[H]**E. Hewitt,*Rings of real-valued continuous functions*. I, Trans. Amer. Math. Soc.**64**(1948), 45-99. MR**10**, 126. MR**0026239 (10:126e)****[J1]**J. E. Joseph,*Pseudocompactness via graphs and projections*(submitted).**[J2]**-,*Multifunctions and graphs*, Pacific J. Math. (to appear). MR**531332 (81h:54015)****[SS]**C. T. Scarborough and A. H. Stone,*Products of nearly compact spaces*, Trans. Amer. Math. Soc.**124**(1966), 131-147. MR**34**#3528. MR**0203679 (34:3528)****[S]**R. M. Stephenson, Jr.,*Pseudocompact spaces*, Trans. Amer. Math. Soc.**134**(1968), 437-448. MR**38**#674. MR**0232349 (38:674)****[T]**R. Talamo,*Pseudocompact spaces and functionally determined uniformities*, Proc. Amer. Math. Soc.**56**(1976), 318-320. MR**0407808 (53:11578)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54D30,
54C30,
54C99

Retrieve articles in all journals with MSC: 54D30, 54C30, 54C99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1979-0524313-7

Keywords:
Pseudocompactness,
filterbases,
graphs

Article copyright:
© Copyright 1979
American Mathematical Society