HOMOGENEITY BY ISOTOPY

GENE G. GARZA

Abstract. Answered is a question asked by Daverman, Bull. Amer. Math. Soc. 84 (1978), 377-405. It is whether a 2-sphere Σ is tame if each isotopy on Σ extends to an isotopy of E^3?

In [2], Daverman asked several interesting questions concerning homogeneity. In particular, he asked if a 2-sphere Σ is tame if each isotopy on Σ extends to an isotopy of E^3? The answer is given by the following theorem.

Theorem. If Σ is a 2-sphere which is homogeneous by isotopy, then Σ is tame.

Proof. Parameterize some cell on Σ by $I^2 = [0, 1] \times [0, 1]$. Let A be an arc which pierces Σ at $(0, 0)$ and is parameterized by a homeomorphism $\varphi: [-1, 1] \rightarrow A$ with $\varphi(0) = (0, 0) \in I^2$. Let $H: E^3 \times I \rightarrow E^3$ be the extension of an isotopy on Σ which moves $\varphi(0)$ to $(1, 0)$ by sliding the left side of the unit square over to the right side in such a manner that, at time t, $(0, t)$ is at (t, t_i). Let G be such an extension which moves the bottom of I^2 to the top. Having done this we see that $G(H(\varphi(0), I), I)$ is the unit square I^2 on Σ and we need only to define

$$g: G(H(\varphi(0), I), I) \times [-1, 1] \rightarrow G(H(A, I), I)$$

by

$$g(G(H(\varphi(0), t_1), t_2), t) = G(H(\varphi(t), t_1), t_2).$$

Now by Daverman's "singular regular neighborhoods" [1] we are done.

Note that by [1], this argument also holds for any $(n - 1)$-sphere in E^n, $n \neq 4$.

Addendum. This is the theorem to which Daverman was referring in [2, p. 387].
BIBLIOGRAPHY

Department of Mathematics, University of Georgia, Athens, Georgia 30602

Current address: Department of Mathematics, Wingate College, Wingate, North Carolina 28174