Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Simple near-ring centralizers of finite rings

Authors: Carlton J. Maxson and Kirby C. Smith
Journal: Proc. Amer. Math. Soc. 75 (1979), 8-12
MSC: Primary 16A76
MathSciNet review: 529202
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a finite ring R with identity and a finite unital R-module V we call $ C(R) = \{ f:V \to V\vert f(\alpha v) = \alpha f(v) $ for all $ \alpha \in R,v \in V\} $ the near-ring centralizer of R. We investigate the structure of $ C(R)$ and obtain a characterization of those rings R for which $ C(R)$ is a simple nonring.

References [Enhancements On Off] (What's this?)

  • [1] G. Betsch, Some structure theorems on 2-primitive near-rings, Rings, Modules and Radicals (Proc. Colloq., Keszthely, 1971), Colloq. Math. Soc. János Bolyai, Vol. 6, North-Holland, Amsterdam, 1973, pp. 73-102. MR 0360722 (50:13169)
  • [2] I. N. Herstein, Noncommutative rings, Carus Monograph No. 15, Math. Assoc. of America, Washington, D. C., 1968. MR 0227205 (37:2790)
  • [3] N. Jacobson, The structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., 1964. MR 0222106 (36:5158)
  • [4] C. J. Maxson and K. C. Smith, The centralizer of a group automorphism, J. Algebra 54 (1978), 27-41. MR 511455 (80b:16029)
  • [5] -, The centralizer of a group endomorphism, J. Algebra (to appear). MR 533806 (80j:20031)
  • [6] -, The centralizer of a set of group automorphisms (preprint).
  • [7] B. R. McDonald, Finite rings with identity, Dekker, New York, 1974. MR 0354768 (50:7245)
  • [8] G. Pilz, Near-rings, North-Holland, Amsterdam, 1977. MR 0469981 (57:9761)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A76

Retrieve articles in all journals with MSC: 16A76

Additional Information

Keywords: Centralizers, simple rings, near-rings
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society