THE CARDINALITY OF QUASICONFORMALLY NONEQUIVALENT TOPOLOGICAL 3-BALLS WITH FLAT BOUNDARIES IS \aleph_0

RAIMO NÄKKI

Abstract. The theorem mentioned in the title is proved. During the course of the proof, the failure for $n = 3$ of the following 2-dimensional result will also be established: The boundary of a Jordan domain D in n-space is a quasiconformal $(n-1)$-sphere if every quasiconformal self-mapping of D can be extended to a quasiconformal self-mapping of the whole space.

1. Introduction. Let Σ^{n-1} be a topological $(n-1)$-sphere imbedded in the n-sphere S^n. By the Jordan-Brouwer separation theorem, Σ^{n-1} divides S^n into two domains, D_1 and D_2, and is their common boundary. The set Σ^{n-1} is collared if there is a neighborhood U of Σ^{n-1} and a homeomorphism h of $U \cap D_1$ (or of $U \cap D_2$) into S^n carrying Σ^{n-1} onto the equator S^{n-1} of S^n. The set Σ^{n-1} is bicollared if h is defined in all of U and maps Σ^{n-1} onto S^{n-1}. The set Σ^{n-1} is flat if there is a homeomorphism h of S^n onto itself which carries Σ^{n-1} onto S^{n-1}. By results of Brown [1], [2], every bicollared Σ^{n-1} in S^n is flat and a collared component of $S^n - \Sigma^{n-1}$ is a topological n-ball.

The set Σ^{n-1} is said to be quasiconformally collared (resp. quasiconformally bicollared) if the homeomorphism h above is quasiconformal. The image of S^{n-1} under a quasiconformal mapping of S^n is generally referred to as a quasiconformal sphere, rather than a quasiconformally flat sphere. Gehring [4] has established quasiconformal analogues to Brown's results. In particular, a quasiconformally collared component of $S^n - \Sigma^{n-1}$ is a quasiconformal n-ball. The other component of $S^n - \Sigma^{n-1}$ need not be a quasiconformal n-ball, even in the case that Σ^{n-1} is flat.

Let \mathcal{F} be the collection of all topological n-balls in S^n whose boundaries are flat $(n-1)$-spheres and whose exteriors are quasiconformal n-balls. We divide \mathcal{F} into equivalence classes by regarding two domains in \mathcal{F} as equivalent if they can be mapped quasiconformally onto each other. Let $E(\mathcal{F})$ denote the set of equivalence classes so obtained. We show that in 3-space $E(\mathcal{F})$ has the cardinality of a continuum. This stands in marked contrast with the situation in 2-space, where the corresponding cardinality is well known to be one. (For related questions, see Kopylov [6].) In the course of the proof, the failure for $n = 3$ of the following result, due to Rickman [8]
for \(n = 2 \), will also be established: The boundary of a Jordan domain \(D \) in \(n \)-space is a quasiconformal \((n-1)\)-sphere if every quasiconformal self-mapping of \(D \) can be extended to a quasiconformal self-mapping of the whole space.

2. Wedges. We consider domains \(D \) in \(\mathbb{R}^3 = \mathbb{R}^3 \cup \{ \infty \} \),

\[
D = \{ x = (x_1, x_2, x_3) \in \mathbb{R}^3: |x_2| < g(x_1), x_1 > 0 \},
\]

where the function \(g: [0, \infty) \to \mathbb{R}^1 \) satisfies the following conditions for some \(0 < a < \infty \):

\[
\begin{align*}
(i) & \quad g \text{ is continuous, } g(0) = 0, g(u) > 0 \text{ for } u > 0, \\
& \quad \text{and } g(u) = g(a) \text{ for } u \geq a. \\
(ii) & \quad g' \text{ is continuous, bounded, and increasing in } (0, a). \\
(iii) & \quad \lim_{u \to 0} g'(u) = 0.
\end{align*}
\]

Such a domain \(D \) is called a wedge of angle zero. The union of the \(x_3 \)-axis and the point \(\infty \) is called the edge of \(D \). (The above terminology is taken from Gehring and Väisälä [5].) Obviously a wedge \(D \) is a Jordan domain whose boundary \(\partial D \) is a flat 2-sphere. The exterior of \(D \) is a quasiconformal 3-ball, while \(D \) is not. (See Gehring and Väisälä [5].) Hence \(\partial D \) is not a quasiconformal 2-sphere, i.e. \(\partial D \) is not quasiconformally bicollared.

We will show that no two of the wedges defined by the functions \(g(u) = u^p, p \in (1, \infty) \), can be mapped quasiconformally onto one another. For this we require an upper and a lower bound for the modulus \(M(\Gamma) \) of a certain path family \(\Gamma \). We let \(F(\Gamma) \) denote the set of all Borel-measurable extended real-valued functions \(\rho \) in \(\mathbb{R}^3 \) for which

\[
\int_{\gamma} \rho \, ds > 1
\]

for each locally rectifiable path \(\gamma \in \Gamma \). The modulus of \(\Gamma \) is defined as

\[
M(\Gamma) = \inf_{\rho \in F(\Gamma)} \int_{\mathbb{R}^3} \rho^3 \, dm.
\]

(For the theory of modulus and quasiconformal mappings, see Gehring [3] and Väisälä [10].)

Lemma 1. Let \(D \) be the wedge defined by the function \(g(u) = u^p \) \((p > 1)\), let \(r_0 > 0 \) be a number such that \(0 < g'(r_0) < 1 \), for \(0 < r < r_0 \) let

\[
Z(r) = \{ x = (x_1, x_2, x_3) : x_1^2 + x_3^2 < r \},
\]

and for \(0 < r_1 < r_2 < r_0 \) let \(\Gamma(r_1, r_2) \) denote the family of all paths joining \(\partial Z(r_1) \) and \(\partial Z(r_2) \) in \(D \cap Z(r_2) - Z(r_1) \). Then
\[
\frac{A(p)}{(r_1^{1-p}/2 - r_2^{1-p}/2)^2} \leq M(\Gamma(r_1, r_2)) \leq \frac{2^{3/2}A(p)}{(r_1^{1-p}/2 - r_2^{1-p}/2)^2},
\]

where

\[
A(p) = 2^{-5/2}(p - 1)^2 \int_0^\pi (\sin \varphi)^p \, d\varphi.
\]

Proof. For the left-hand inequality, let \(p \in F(\Gamma(r_1, r_2)) \), let \((r, \varphi, x_2)\) be cylindrical coordinates in \(\mathbb{R}^3\) with the polar angle \(\varphi\) being measured from the positive half of the \(x_3\)-axis, and for \(r \in [r_1, r_2]\), \(\varphi \in (0, \pi), \nu \in (-1, 1)\) let

\[
\gamma_{\varphi\nu}(r) = (r, \varphi, \nu g(r \sin \varphi)).
\]

Since \(\gamma_{\varphi\nu}\) is a rectifiable path in \(\Gamma(r_1, r_2)\) and since \(g'(r_2) < 1\) by hypothesis and by (2), we obtain

\[
1 \leq \left(\int_{\gamma_{\varphi\nu}} \rho \, ds \right)^3 \leq \left(2^{1/2} \int_{r_1}^{r_2} \rho \, dr \right)^3
\]

\[
\leq 2^{3/2} \int_{r_1}^{r_2} \rho^3 \, g(r \sin \varphi) \, dr \left(\int_{r_1}^{r_2} r^{-1/2} g(r \sin \varphi)^{-1/2} \, dr \right)^2
\]

by Hölder's inequality. Integrating with respect to \(\varphi\) and \(\nu\) yields

\[
\int_{\mathbb{R}^3} \rho^3 \, dm \geq \int_{-1}^{1} d\nu \int_0^\pi d\varphi \int_{r_1}^{r_2} \rho^3 \, g(r \sin \varphi) \, dr
\]

\[
\geq A(p)(r_1^{1-p}/2 - r_2^{1-p}/2)^{-2},
\]

where \(A(p)\) is as in (3). Since \(p \in F(\Gamma(r_1, r_2))\) was arbitrary, this gives the left-hand inequality.

The right-hand inequality is obtained by observing that

\[
\rho(x) = \begin{cases}
 p - 1 & \text{if } x = (r, \varphi, x_2) \in D \cap Z(r_2) - Z(r_1), \\
 0 & \text{otherwise},
\end{cases}
\]

belongs to \(F(\Gamma(r_1, r_2))\).

We also need the following extension result which shows, in particular, that, contrary to the situation in the plane (Rickman [8]), the extendability of 3-dimensional quasiconformal mappings over a flat 2-sphere does not guarantee that the 2-sphere will be quasiconformal.

Lemma 2. All quasiconformal mappings between wedges can be extended to quasiconformal self-mappings of \(\mathbb{R}^3\).

Proof. This result was proved in [7].
Lemma 3. Let D and D^\ast be two wedges defined respectively by the functions $g(u) = u^p$ and $g^*(u) = u^{p^*}$, $p, p^* \in (1, \infty)$. Then D can be mapped quasiconformally onto D^\ast if and only if $p = p^*$.

Proof. The sufficiency part is obvious. For the necessity part, suppose, for example, that $p < p^*$, and that, contrary to the assertion, there is a quasiconformal mapping f of D onto D^\ast. By Lemma 2, f can be extended to a quasiconformal mapping of \mathbb{R}^3 onto itself. Denote this mapping again by f, let E denote the common edge of D and D^\ast, and for $x \in E - \{\infty, f(\infty)\}$ set

$$L(x, f^{-1}) = \limsup_{h \to 0} \frac{|f^{-1}(x + h) - f^{-1}(x)|}{|h|}.\$$

In the proof of Lemma 2 it is verified that $f(E) = E$. Utilizing an idea of Syčev [9], we note the existence of a point x_0 in $E - \{\infty, f(\infty)\}$ such that $L(x_0, f^{-1}) > 0$.

Otherwise f^{-1} would be locally constant in $E - \{\infty, f(\infty)\}$. Assume, for convenience of notation, that $x_0 = 0 = f^{-1}(x_0)$. Let

$$L(r) = \max_{|x| = r} |f(x)|, \quad l(r) = \min_{|x| = r} |f(x)|,$$

$$H = \limsup_{r \to 0} \frac{L(r)}{l(r)}.$$

Since $H < \infty$ by the quasiconformality of f, there exist positive constants r_0 and H_0 with $g'(r_0) \in (0, 1]$ such that

$$L(r) / l(r) \leq H_0$$

whenever $r \in (0, r_0]$. Choose r_0^* so that $g^*(r_0^*) \in (0, 1]$ and $D^\ast \cap Z(r_0^*)$ lies in $f(D \cap Z(r_0))$, where, for $r \in (0, 1]$, $Z(r)$ is as defined in Lemma 1. Next choose $c \in (0, L(0, f^{-1}))$ and let (x_k) be a sequence of points in D such that $x_k \to 0$, $|x_k| < r_0$, $|f(x_k)| < r_0^*$, and

$$|x_k| / |f(x_k)| > c.\$$

Denoting $|x_k| = r_k$ and using (4) and (5) we obtain

$$L(r_k) < H_0 l(r_k) \leq H_0 |f(x_k)| \leq H_0 r_k / c = C_0 r_k,$$

where $C_0 = H_0 / c$. Passing to a subsequence, we may assume that $C_0 r_k < r_0^*$ for every k. Since $g'(r_0) < 1$, it follows from (6) that $f(D \cap Z(r_k/2))$ lies in $D^\ast \cap Z(C_0 r_k)$. Let $\Gamma(r_k/2, r_0)$ be the family of all paths joining $\partial Z(r_k/2)$ and $\partial Z(r_0)$ in $D \cap Z(r_0) - Z(r_k/2)$ and let $\Gamma^*(C_0 r_k, r_0^*)$ be the family of all paths
joining $\partial Z(C_{0}r_{\delta})$ and $\partial Z(r_{\delta}^{*})$ in $D^{*} \cap Z(r_{0}) = Z(C_{0}r_{\delta})$. Since $f \Gamma(r_{k}/2, r_{0})$ is minorized by $\Gamma^{*}(C_{0}r_{k}^{*}, r_{0}^{*})$, we obtain

$$\frac{M(\Gamma(r_{k}/2, r_{0}))}{M(f \Gamma(r_{k}/2, r_{0}))} \geq \frac{M(\Gamma^{*}(C_{0}r_{k}^{*}, r_{0}^{*}))}{M(\Gamma^{*}(C_{0}r_{k}^{*}, r_{0}^{*}))} \geq 2^{-3/2} \frac{A(p)\left[(r_{k}/2)^{(1-p)/2} - r_{0}^{(1-p)/2}\right]}{A(p)\left[(C_{0}r_{k})^{(1-p^{*})/2} - r_{0}^{*}(1-p^{*})/2\right]}^{-2} \geq C^{*}r_{k}^{p-p^{*}}$$

by Lemma 1, where C^{*} is a positive constant which does not depend on k. Letting $k \to \infty$ leads to a contradiction with the quasiconformality of f. The proof is complete.

3. Results. Since the boundary of a wedge is not a quasiconformal sphere, Lemma 2 yields:

Theorem 1. In 3-space there are Jordan domains D whose boundaries are flat, but not quasiconformally flat, such that all quasiconformal self-mappings of D can be extended to quasiconformal self-mappings of \mathbb{R}^{3}.

Since the cardinality of the collection of all subdomains of \mathbb{R}^{3} is c, the cardinality of a continuum, Lemma 3 yields:

Theorem 2. In 3-space the cardinality of a maximal collection of quasiconformally nonequivalent Jordan domains with flat boundaries and quasiconformally collared exteriors is c.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HELSINKI, HELSINKI, FINLAND

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48109

Current address: Department of Mathematics, University of Texas, Austin, Texas 78712