Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On two questions of Halmos concerning subspace lattices

Authors: W. E. Longstaff and Peter Rosenthal
Journal: Proc. Amer. Math. Soc. 75 (1979), 85-86
MSC: Primary 47A15
MathSciNet review: 529219
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An example is constructed of a nonreflexive pentagonal lattice of subspaces. It follows that reflexivity is not invariant under lattice isomorphism, even for finite lattices.

References [Enhancements On Off] (What's this?)

  • [1] C. Foias, Invariant para-closed subspaces, Indiana Univ. Math. J. 21 (1972), 887-906. MR 0293439 (45:2516)
  • [2] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. MR 0270173 (42:5066)
  • [3] -, Reflexive lattices of subspaces, J. London Math. Soc. 4 (1971), 257-263. MR 0288612 (44:5808)
  • [4] K. J. Harrison and W. E. Longstaff, Reflexive subspace lattices in finite-dimensional Hilbert spaces, Indiana Univ. Math. J. 26 (1977), 1019-1025. MR 0470708 (57:10454)
  • [5] R. E. Johnson, Distinguished rings of linear transformations, Trans. Amer. Math. Soc. 111 (1964), 400-412. MR 0161884 (28:5088)
  • [6] E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, On invariant operator ranges, Trans. Amer. Math. Soc. (to appear). MR 531986 (81c:47010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A15

Retrieve articles in all journals with MSC: 47A15

Additional Information

Keywords: Reflexive lattice, invariant subspace
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society