Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Jordan factorization theorem for polynomial matrices


Author: H. K. Wimmer
Journal: Proc. Amer. Math. Soc. 75 (1979), 201-206
MSC: Primary 15A54; Secondary 15A23
DOI: https://doi.org/10.1090/S0002-9939-1979-0532135-6
MathSciNet review: 532135
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that a complex polynomial matrix $ M(\lambda )$ which has a proper rational inverse can be factored into $ M(\lambda ) = \hat C(\lambda )(\lambda I - J)\hat B(\lambda )$ where J is a matrix in Jordan normal form and the columns of $ \hat C(\lambda )$ consist of eigenvectors and generalized eigenvectors of a linear operator associated with $ M(\lambda )$. For a proper rational matrix W with factorizations $ W(\lambda ) = C{(\lambda I - J)^{ - 1}}B = M{(\lambda )^{ - 1}}P(\lambda ) = Q(\lambda )N{(\lambda )^{ - 1}}$ it will be proved that C consists of Jordan chains of M and B of Jordan chains of N.


References [Enhancements On Off] (What's this?)

  • [1] H. Baumgärtel, Endlichdimensionale analytische Störungstheorie, Akademie Verlag, Berlin, 1972. MR 0634965 (58:30389)
  • [2] R. W. Brockett, Finite dimensional linear systems, Wiley, New York, 1970.
  • [3] W. A. Coppel, Matrices of rational functions, Bull. Austral. Math. Soc. 11 (1974), 89-113. MR 0401805 (53:5632)
  • [4] P. Fuhrmann, Algebraic system theory, an analyst's point of view, J. Franklin Inst. 301 (1976), 521-540. MR 0414159 (54:2263)
  • [5] F. R. Gantmacher, Matrizenrechnung, Teil II, 3. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1971.
  • [6] P. Lancaster and H. K. Wimmer, Zur Theorie der $ \lambda $-Matrizen, Math. Nachr. 68 (1975), 325-330. MR 0573015 (58:28036)
  • [7] H. K. Wimmer, Jordan-Ketten und Realisierungen rationaler Matrizen, Linear Algebra and Appl. 20 (1978), 101-110. MR 0466172 (57:6053)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A54, 15A23

Retrieve articles in all journals with MSC: 15A54, 15A23


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0532135-6
Keywords: Polynomial matrices, Jordan chains, Jordan normal form, realizations, shift operator
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society