Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An example concerning parts and Newtonian capacity


Author: James Li Ming Wang
Journal: Proc. Amer. Math. Soc. 75 (1979), 218-220
MSC: Primary 46J10
DOI: https://doi.org/10.1090/S0002-9939-1979-0532139-3
MathSciNet review: 532139
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following theorem: Let $ \phi $ be an admissible function with $ \phi ({0^ + }) = 0$ and p a nonnegative integer. Then there is a compact set X in the plane and $ x \in X$ such that x is a nonpeak point of $ R(X)$,

$\displaystyle \sum {{2^{(p + 1)n}}\phi {{({2^{ - n}})}^{ - 1}}\mathcal{C}({A_n}(x)\backslash P(x)) < \infty ,} $

while $ \Sigma {2^{(p + 1)n}}\phi {({2^{ - n}})^{ - 1}}\gamma ({A_n}(x)\backslash X) = \infty $, where $ {A_n}(x) = \{ {2^{ - n - 1}} \leqslant \vert z - x\vert \leqslant {2^{ - n}}\} ,P(x)$ denotes the Gleason part of $ x,\gamma $ the analytic capacity and $ \mathcal{C}$ the Newtonian capacity.

References [Enhancements On Off] (What's this?)

  • [1] J. Garnett, Analytic capacity and measure, Lecture Notes in Math., vol. 297, Springer-Verlag, Berlin, 1972. MR 0454006 (56:12257)
  • [2] A. Hallstrom, On bounded point derivations and analytic capacity, J. Functional Analysis 4 (1969), 153-165. MR 0243358 (39:4680)
  • [3] A. O'Farrell, Density of parts of algebras on the plane, Trans. Amer. Math. Soc. 196 (1974), 403-414 MR 0361795 (50:14240)
  • [4] -, Analytic capacity and equicontinuity (preprint).
  • [5] J. Wang, Modules of approximate continuity for $ R(X)$, Math. Scand. 34 (1974), 219-225. MR 0355079 (50:7556)
  • [6] J. Wermer, Potential theory, Lecture Notes in Math., vol. 408, Springer-Verlag, Berlin, 1974. MR 0454033 (56:12284)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J10

Retrieve articles in all journals with MSC: 46J10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0532139-3
Keywords: Gleason part, Newtonian capacity, analytic capacity
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society