Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Integral representations and the complex Monge-Ampère equation in strictly convex domains

Author: Nancy K. Stanton
Journal: Proc. Amer. Math. Soc. 75 (1979), 276-278
MSC: Primary 32A25
MathSciNet review: 532150
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a relationship between Aizenberg's integral representation formula for holomorphic functions in a strictly convex domain and the complex Monge-Ampère equation.

References [Enhancements On Off] (What's this?)

  • [1] Patrick Ahern and Robert Schneider, The boundary behavior of Henkin’s kernel, Pacific J. Math. 66 (1976), no. 1, 9–14. MR 0435449
  • [2] L. A. Aizenberg, Integral representations of functions which are holomorphic in convex regions of $ {{\mathbf{C}}^n}$ space, Dokl. Akad. Nauk SSSR 151 (1963), 1247-1249; English, transl., Soviet Math. Dokl. 4 (1963), 1149-1152.
  • [3] Charles L. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2) 103 (1976), no. 2, 395–416. MR 0407320,
  • [4] François Norguet, Introduction aux fonctions de plusieurs variables complexes: représentations intégrales, Fonctions de plusieurs variables complexes (Sém. François Norguet, 1970–1973; à la mémoire d’André Martineau), Springer, Berlin, 1974, pp. 1–97. Lecture Notes in Math., Vol. 409 (French). MR 0369729

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A25

Retrieve articles in all journals with MSC: 32A25

Additional Information

Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society