Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Vector fields orthogonal to a nonvanishing infinitesimal isometry

Author: Chao Chu Liang
Journal: Proc. Amer. Math. Soc. 75 (1979), 326-328
MSC: Primary 57R25; Secondary 53C21
MathSciNet review: 532160
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be a nonvanishing infinitesimal isometry on a compact Riemannian manifold M. If there exists a nonvanishing vector field orthogonal to X and commuting with X, then the Euler characteristic of the complex consisting of all the differential forms u satisfying $ i(X)u = 0 = L(x)u$ is zero.

References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, Vector fields on manifolds, Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen, Heft 200, Westdeutscher Verlag, Cologne, 1970. MR 0263102 (41:7707)
  • [2] -, Elliptic operators and compact groups, Lecture Notes in Math., vol. 401, Springer-Verlag, Berlin-Heidelberg-New York, 1974. MR 0482866 (58:2910)
  • [3] W. Greub, S. Halperin and R. Vanstone, Connections, curvature, and cohomology. Vol. II, Academic Press, New York-London, 1973. MR 0400275 (53:4110)
  • [4] B. L. Reinhart, Harmonic integrals on foliated manifolds, Amer. J. Math. 81 (1959), 529-536. MR 0107280 (21:6005)
  • [5] G. W. Schwarz, On the de Rham cohomology of the leaf space of a foliation, Topology 13 (1974), 185-187. MR 0341503 (49:6254)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R25, 53C21

Retrieve articles in all journals with MSC: 57R25, 53C21

Additional Information

Keywords: Infinitesimal isometry, vector fields, transversally elliptic operators, Euler characteristic
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society