Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pontryagin duality for topological modules


Author: Joe Flood
Journal: Proc. Amer. Math. Soc. 75 (1979), 329-333
MSC: Primary 22D35
DOI: https://doi.org/10.1090/S0002-9939-1979-0532161-7
MathSciNet review: 532161
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Pontryagin duality for topological modules over any locally compact ring is described, using the Pontryagin dual of the ring as character module.


References [Enhancements On Off] (What's this?)

  • [1] O. Goldman and C. H. Sah, Locally compact rings of special type, I. Algebra 11 (1969), 363-454. MR 0236232 (38:4530)
  • [2] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin, 1963.
  • [3] I. Kaplansky, Locally compact rings, Amer. J. Math. 70 (1948), 447-459. MR 0024887 (9:562c)
  • [4] M. D. Levin, Locally compact modules, J. Algebra 24 (1973), 25-53. MR 0310125 (46:9227)
  • [5] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Math., vol. 5, Springer-Verlag, Berlin, 1971. MR 0354798 (50:7275)
  • [6] G. C. Preston, On locally compact totally disconnected Abelian groups and their character groups, Pacific J. Math. 6 (1956), 121-134. MR 0079219 (18:51e)
  • [7] M. F. Smith, The Pontrjagin duality theorem in linear spaces, Ann. of Math. (2) 56 (1952), 248-253. MR 0049479 (14:183a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22D35

Retrieve articles in all journals with MSC: 22D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0532161-7
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society