Whitney's trick for three dimensional homology classes of manifolds
Author:
Masayuki Yamasaki
Journal:
Proc. Amer. Math. Soc. 75 (1979), 365371
MSC:
Primary 57N15
MathSciNet review:
532167
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In his recent paper, Y. Matsumoto has defined a triple product of 2homology classes of simplyconnected oriented 4manifolds, when the intersection numbers are zero. In the present paper, the author establishes that three 2homology classes can be homotopically separated if the intersection numbers and the triple product vanish.
 [1]
Michael
Freedman and Robion
Kirby, A geometric proof of Rochlin’s theorem, Algebraic
and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford,
Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc.,
Providence, R.I., 1978, pp. 85–97. MR 520525
(80f:57015)
 [2]
Kazuaki
Kobayashi, On a homotopy version of 4dimensional Whitney’s
lemma, Math. Sem. Notes Kobe Univ. 5 (1977),
no. 1, 109–116. MR 0458431
(56 #16634)
 [3]
Yukio
Matsumoto, Secondary intersectional properties of 4manifolds and
Whitney’s trick, Algebraic and geometric topology (Proc. Sympos.
Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure
Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978,
pp. 99–107. MR 520526
(80e:57017)
 [4]
John
Milnor, Lectures on the ℎcobordism theorem, Notes by
L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J.,
1965. MR
0190942 (32 #8352)
 [1]
 M. Freedman and R. Kirby, A geometric proof of Rochlin's theorem, Proc. Sympos. Pure Math., vol. 32, Part 2, Amer. Math. Soc., Providence, R. I., 1978, pp. 8598. MR 520525 (80f:57015)
 [2]
 K. Kobayashi, On a homotopy version of 4dimensional Whitney's lemma, Math. Seminar Notes Kobe Univ. 5 (1977), 109116. MR 0458431 (56:16634)
 [3]
 Y. Matsumoto, Secondary intersectional properties of 4manifolds and Whitney's trick, Proc. Sympos. Pure Math., vol. 32, Part 2, Amer. Math. Soc., Providence, R. I., 1978, pp. 99107. MR 520526 (80e:57017)
 [4]
 J. Milnor, Lectures on the hcobordism theorem, Math. Notes, vol. 1, Princeton Univ. Press, Princeton, N. J., 1965. MR 0190942 (32:8352)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
57N15
Retrieve articles in all journals
with MSC:
57N15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197905321678
PII:
S 00029939(1979)05321678
Keywords:
Matsumoto triple,
Whitney's trick
Article copyright:
© Copyright 1979
American Mathematical Society
