Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Whitney's trick for three $ 2$-dimensional homology classes of $ 4$-manifolds


Author: Masayuki Yamasaki
Journal: Proc. Amer. Math. Soc. 75 (1979), 365-371
MSC: Primary 57N15
DOI: https://doi.org/10.1090/S0002-9939-1979-0532167-8
MathSciNet review: 532167
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In his recent paper, Y. Matsumoto has defined a triple product of 2-homology classes of simply-connected oriented 4-manifolds, when the intersection numbers are zero. In the present paper, the author establishes that three 2-homology classes can be homotopically separated if the intersection numbers and the triple product vanish.


References [Enhancements On Off] (What's this?)

  • [1] M. Freedman and R. Kirby, A geometric proof of Rochlin's theorem, Proc. Sympos. Pure Math., vol. 32, Part 2, Amer. Math. Soc., Providence, R. I., 1978, pp. 85-98. MR 520525 (80f:57015)
  • [2] K. Kobayashi, On a homotopy version of 4-dimensional Whitney's lemma, Math. Seminar Notes Kobe Univ. 5 (1977), 109-116. MR 0458431 (56:16634)
  • [3] Y. Matsumoto, Secondary intersectional properties of 4-manifolds and Whitney's trick, Proc. Sympos. Pure Math., vol. 32, Part 2, Amer. Math. Soc., Providence, R. I., 1978, pp. 99-107. MR 520526 (80e:57017)
  • [4] J. Milnor, Lectures on the h-cobordism theorem, Math. Notes, vol. 1, Princeton Univ. Press, Princeton, N. J., 1965. MR 0190942 (32:8352)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N15

Retrieve articles in all journals with MSC: 57N15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0532167-8
Keywords: Matsumoto triple, Whitney's trick
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society