THE NOETHERIAN PROPERTY FOR QUOTIENT RINGS OF INFINITE POLYNOMIAL RINGS

ROBERT GILMER\(^1\) AND WILLIAM HEINZER\(^2\)

ABSTRACT. Let \(X\) be an infinite set of indeterminates over the commutative Noetherian ring \(R\) with identity. We prove that the quotient ring of \(R[X]\) with respect to the multiplicative system of polynomials of unit content is also Noetherian. Moreover, we show that certain quotient rings of \(R[X]\) with respect to multiplicative systems of monic polynomials (where "monic" is appropriately defined) are also Noetherian.

Let \(X = \{X_\lambda\}_{\lambda \in \Lambda}\) be a set of indeterminates over \(R\), a commutative ring with identity. The content of a polynomial \(f \in R[X]\) is denoted by \(C(f)\) and is defined to be the ideal of \(R\) generated by the coefficients of \(f\); if \(C(f) = R\), then \(f\) has unit content. The quotient ring of \(R[X]\) with respect to the multiplicative set of polynomials of unit content is denoted by \(R(X)\). Ray Heitmann has asked\(^3\) if \(R(X)\) is Noetherian, provided the ring \(R\) is Noetherian. We show in Theorem 6 that the answer to this question is affirmative. We subsequently define other quotient rings of \(R[X]\), contained in \(R(X)\) and defined in terms of certain multiplicative sets of "monic" polynomials of \(R[X]\). We show the Noetherian property to be preserved also for these quotient rings of \(R[X]\).

The ring \(R(X)\) seems to have been first considered by Krull in [5], while Nagata introduced the notation \(R(X)\) in [10, p. 17]. The following result, which is a partial citation of Proposition 33.1 of [2], lists some basic properties of the ring \(R(X)\).

PROPOSITION 1. Let \(S\) be the set of elements of \(R[X]\) of unit content, and let \(\{M_\beta\}_{\beta \in \beta}\) be the set of maximal ideals of \(R\). For each \(\beta \in \beta\), denote by \(M_\beta[X]\) and \(M_\beta(X)\) the ideals of \(R[X]\) and \(R(X)\), respectively, generated by \(M_\beta\).

1. \(S = R[X] - (\bigcup_{\beta \in \beta} M_\beta[X])\).
2. \(\{M_\beta[X]\}\) is the family of ideals of \(R[X]\) maximal with respect to the property of failure to meet the multiplicative system \(S\); hence \(\{M_\beta(X)\}\) is the set of maximal ideals of \(R(X)\).
3. If \(Q\) is an ideal of \(R\), then \(QR(X) \cap R = Q\); if \(Q\) is \(P\)-primary in \(R\), then \(QR(X)\) is \(PR(X)\)-primary.

Presented to the Society November 12, 1977; received by the editors September 9, 1978.

Key words and phrases. Noetherian ring, polynomial of unit content, monic polynomial.

Research supported by NSF Grant MCS 75-06591.

Research supported by NSF Grant 7800798.

Private communication.

© 1979 American Mathematical Society

0002-9939/79/0000-0350/S02.75

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
For a prime ideal P of a commutative ring, we use $h(P)$ to denote the height of P ([2, p. 109], [10, p. 24]).

Lemma 2. If R is Noetherian, if T is a quotient ring of the polynomial ring $R[[X_\lambda]]$, and P is a prime ideal of T, then $h(P) > h(P \cap R)$, and equality holds if and only if $P = (P \cap R)T$.

Proof. Since prime ideals of T are the extensions of their contractions in $R[[X_\lambda]]$, it suffices to prove the result for $T = R[[X_\lambda]]$. Moreover, since prime ideals extend to prime ideals and contract to themselves with respect to polynomial ring extension, and since $R[[X_\lambda]]$ is the direct union of the polynomial rings over R on finite subsets of $\{X_\lambda\}$, it suffices to prove the result for $T = R[X_1, \ldots, X_n]$, and hence just for the case of a polynomial ring in one variable over a Noetherian ring. The result in this case is well known ([6, §6], [4, Theorem 149]).

Lemma 3. If R is Noetherian, if T is a quotient ring of the polynomial ring $R[[X_\lambda]]$, and P is a prime ideal of T of finite height, then there exists a finite subset $\{X_1, \ldots, X_n\}$ of $\{X_\lambda\}$ such that $P = (P \cap R[X_1, \ldots, X_n])T$.

Proof. Again, since each prime ideal of T is the extension of its contraction to $R[[X_\lambda]]$, we may assume that $T = R[[X_\lambda]]$. If $h(P) = r$, let $P_0 < P_1 < \cdots < P_r = P$ be a chain of prime ideals of T, and let $f_i \in P_i \setminus P_{i-1}$, $i = 1, \ldots, r$. The f_i are polynomials in a finite subset $\{X_1, \ldots, X_n\}$ of $\{X_\lambda\}$ and $h(P) = h(P \cap R[X_1, \ldots, X_n])$. Hence, $P = (P \cap R[X_1, \ldots, X_n])T$ by Lemma 2.

Theorem 4. If R is Noetherian, if T is a quotient ring of the polynomial ring $R[[X_\lambda]]$, and P is a prime ideal of T of finite height, then P is finitely generated.

Proof. By Lemma 3, $P = (P \cap R[X_1, \ldots, X_n])T$. Since R is Noetherian, $R[X_1, \ldots, X_n]$ is Noetherian by the Hilbert Basis Theorem. Hence $P \cap R[X_1, \ldots, X_n]$, and therefore P, is finitely generated.

Theorem 5. If R is Noetherian and T is a quotient ring of the polynomial ring $R[[X_\lambda]]$, then T is Noetherian if and only if each prime ideal of T has finite height.

Proof. By Krull’s Principal Ideal Theorem, each prime ideal of a Noetherian ring has finite height. Therefore the condition is clearly necessary. If each prime ideal of T has finite height, then, by Theorem 4, each prime ideal of T is finitely generated, so by a theorem of Cohen ([4, p. 5] or [10, p. 8]) T is Noetherian.

4If R is not Noetherian, it can happen that $P = (P \cap R)[X]$ and $h(P) > h(P \cap R)$ [2, p. 364].
Theorem 6. If R is Noetherian, then $R(X) = R(\{X_\lambda\}_{\lambda \in \Lambda})$ is also Noetherian.

Proof. By Theorem 5 and Proposition 1, it suffices to show for each maximal ideal M of R that $MR(\{X_\lambda\})$ has finite height. Since R is Noetherian, M is of finite height, and, by Lemma 2, $h(M) = h(MR(\{X_\lambda\}))$.

Assume that Y is an indeterminate over the ring R. A ring closely related to $R(Y)$ is the quotient ring of $R[Y]$ with respect to the multiplicative system of monic polynomials over R. We denote this ring by $R\langle Y \rangle$; it arises in Quillen’s proof of the Serre Conjecture [11], and has been the object of some other recent investigation ([1], [7, Chapter IV], [8]). For a polynomial ring in two variables over R, say $R[X_1, X_2]$, a natural analogue of $R\langle Y \rangle$ is obtained by defining $R\langle X_1, X_2 \rangle$ to be the quotient ring of $R[X_1, X_2]$ at the multiplicative system of monic polynomials in X_2 over $R\langle X_1 \rangle$. By induction we define

$$R\langle X_1, \ldots, X_n \rangle = R\langle X_1, \ldots, X_{n-1} \rangle\langle X_n \rangle.$$

Note that the definition of $R\langle X_1, \ldots, X_n \rangle$, unlike that of $R(X_1, \ldots, X_n)$, depends upon the order of the indeterminates. For example, it is proved in [3, Proposition 10] that $R\langle X_1, X_2 \rangle$ and $R\langle X_2, X_1 \rangle$ are equal as subrings of the total quotient ring of $R[X_1, X_2]$ if and only if R is 0-dimensional.

In general, if Λ is a totally ordered set and $\{X_\lambda\}_{\lambda \in \Lambda}$ is a set of indeterminates over R, then we define $R\langle \{X_\lambda\} \rangle$ to be the union of the directed set $\{R\langle X_\lambda, \ldots, X_\nu \rangle\}$ of subrings of the total quotient ring of $R(\{X_\lambda\})$, the union being taken over all finite subsets $\{\lambda_1 < \lambda_2 < \cdots < \lambda_n\}$ of Λ. It is clear that $R\langle \{X_\lambda\} \rangle$ so defined is a regular quotient ring of $R(\{X_\lambda\})$. We proceed to show that $R\langle \{X_\lambda\} \rangle = R(\{X_\lambda\})_S$, where S is the multiplicative system of “monic” polynomials in $R(\{X_\lambda\})$, defined in the following manner. The total order on Λ induces, via the reverse lexicographic order, a total order on the set of monomials in the indeterminates X_λ, as follows. If $\lambda_1, \ldots, \lambda_n \in \Lambda$ are such that $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ and if $e_1, \ldots, e_n, f_1, \ldots, f_n$ are nonnegative integers, then

$$X_{\lambda_1}^{e_1}X_{\lambda_2}^{e_2}\cdots X_{\lambda_n}^{e_n} < X_{\lambda_1}^{f_1}X_{\lambda_2}^{f_2}\cdots X_{\lambda_n}^{f_n}$$

if and only if $e_i < f_i$ for the largest integer i such that the corresponding exponents are unequal. This order on monomials is compatible with multiplication. If g is a nonzero element of $R(\{X_\lambda\})$, then g can be written in the form

$$g = r_1Y_1 + \cdots + r_kY_k,$$
where \(r_i \in R, r_k \neq 0 \), and \(Y_1, \ldots, Y_k \) are monomials such that \(Y_1 < \cdots < Y_k \). We call \(Y_k \) the leading monomial of \(g \), \(r_k \) the leading coefficient of \(g \), and say that \(g \) is monic if \(r_k = 1 \). Let \(S \) be the set of monic polynomials in \(R[[X]] \). It is clear that \(S \) is a multiplicative system in \(R[[X]] \). Since \(S \cap R[X, \ldots, X_k] \) is the set of monic polynomials in \(R[X_1, \ldots, X_k] \), and since \(R\langle X \rangle \) is defined to be \(\bigcup \{ R\langle X_1, \ldots, X_k \rangle | \{X\}_k \text{ is a finite subset of } \Lambda \} \), it is sufficient to establish the equality \(R\langle X \rangle = R[[X]]_S \) in the case where \(\Lambda \) is finite. For the case of one variable, say \(X_1 \), \(R\langle X_1 \rangle = R[X_1]_S \) by definition. For \(n \) variables, say \(X_1, \ldots, X_n \), it is clear that \(R[X_1, \ldots, X_n]_S \) is contained in \(R\langle X_1, \ldots, X_n \rangle \), and proceeding by induction, we may assume that \(R\langle X_1, \ldots, X_{n-1} \rangle[X_n]_S \) is contained in \(R[X_1, \ldots, X_n]_S \). If \(f \) is a polynomial in \(R\langle X_1, \ldots, X_{n-1} \rangle[X_n] \) that is monic as a polynomial in \(X_n \) with coefficients in \(R\langle X_1, \ldots, X_{n-1} \rangle \), then we wish to show that \(f \) is a unit in \(R[X_1, \ldots, X_n]_S \). We have \(f = X_n^m + a_{m-1}X_n^{m-1} + \cdots + a_0 \) with the \(a_i \in R\langle X_1, \ldots, X_{n-1} \rangle \). By the induction hypothesis, there exists \(s \in S \cap R[X_1, \ldots, X_{n-1}] \) such that \(sa_i \in R[X_1, \ldots, X_{n-1}] \) for \(i = 1, \ldots, m - 1 \). If \(s \) has leading monomial \(Y \), then \(YX_n^m \) is the leading monomial of \(sf \in R[X_1, \ldots, X_n] \), and \(sf \) is a monic polynomial in \(R[X_1, \ldots, X_n] \). Therefore \(sf \in S \) and \(f \) is a unit of \(R[X_1, \ldots, X_n]_S \). We conclude that \(R\langle X \rangle = R[[X]]_S \).

We shall prove in Theorem 9 that the ring \(R\langle X \rangle \) is Noetherian if \(R \) is Noetherian; for finite dimensional \(R \), this follows readily from Theorem 5.

Proposition 7. Let \(\Lambda \) be a totally ordered set and let \(\{X_\lambda | \lambda \in \Lambda \} \) be a set of indeterminates over the finite dimensional Noetherian ring \(R \). Then \(R\langle \{X_\lambda | \lambda \in \Lambda \} \rangle \) is Noetherian.

Proof. By Theorem 5, it suffices to show that \(R\langle X \rangle \) is finite dimensional. If \(J \) is an \(n \)-dimensional Noetherian ring, it is known that \(J \langle Y \rangle \) again has dimension \(n \) ([1], [7, Proposition 1.2, Chapter IV]). Since \(R\langle X \rangle \) is the direct limit of the rings \(R\langle X_\lambda \rangle \) for finite subsets \(\{X_\lambda \}_{\lambda \in \Lambda} \) of \(\{X_\lambda \} \), and since the direct limit of rings of dimension \(n \) is a ring of dimension \(< n \), we conclude that \(R\langle X \rangle \) is Noetherian. (In fact, \(\dim R\langle X \rangle = n \).

Remark 8. If \(N \) is a multiplicative system in \(R \), then there exist canonical homomorphisms \(\varphi: R(X)_N \rightarrow R_N(X) \) and \(\psi: R\langle X \rangle_N \rightarrow R_N\langle X \rangle \). In general, these canonical homomorphisms are not surjective. This is the case even if \(N \) is the complement of a maximal ideal of \(R \). For example, if \(R \) is a polynomial ring in two variables over an algebraically closed field and \(N \) is the complement of a maximal ideal of \(R \), then it is easy to see that \(R(X)_N \) and \(R\langle X \rangle_N \) are properly contained in \(R_N(X) \) and \(R_N\langle X \rangle \) as subrings of the quotient field of \(R[X] \). Thus, to show \(R\langle X \rangle \) is Noetherian for \(R \) an infinite dimensional Noetherian ring, something other than just a naive localization argument and an application of Proposition 7 is necessary. We show below, however, that a modified localization argument does work.
Theorem 9. If Λ is a totally ordered set and $\{X_\lambda|\lambda \in \Lambda\}$ is a set of indeterminates over the Noetherian ring R, then $R\langle\{X_\lambda\}\rangle$ is Noetherian.

Proof. Let S be the multiplicative system of monic polynomials in $R\{\{X_\lambda\}\}$. We have $R\{\{X_\lambda\}\}_S = R\langle\{X_\lambda\}\rangle$, and to show that $R\langle\{X_\lambda\}\rangle$ is Noetherian, it suffices, by Theorem 5, to show that if P is a prime ideal of $R\{\{X_\lambda\}\}$ not meeting S, then P is of finite height. Consider the set A consisting of zero and the set of leading coefficients of elements of P. It is clear that A is closed under multiplication by elements of R. We note that A is also closed under subtraction. For suppose r_1 and r_2 are the leading coefficients of f_1 and f_2 in P. Certainly $r_1 - r_2$ is in A if $r_1 = 0$, $r_2 = 0$, or $r_1 = r_2$. Otherwise, if m_1 is the leading monomial of f_1, then $r_1 - r_2$ is the leading coefficient of $f_1m_2 - f_2m_1 \in P$. Therefore A is an ideal of R, and since P does not meet S, the ideal A is proper. Let M be a maximal ideal of R containing A, and let φ denote the canonical homomorphism of $R\{\{X_\lambda\}\}$ into $R_M\{\{X_\lambda\}\}$. We prove that the prime ideal $\varphi(P)R_M\{\{X_\lambda\}\}$ does not meet the multiplicative system of monic polynomials of $R_M\{\{X_\lambda\}\}$. Suppose not. Then there exist $f \in P$ and $r \in R \setminus M$ such that $\varphi(f)/\varphi(r)$ is a monic polynomial in $R_M\{\{X_\lambda\}\}$. If Y is the leading monomial of $\varphi(f)/\varphi(r)$ in $R_M\{\{X_\lambda\}\}$, then there exists $t \in R \setminus M$ such that tf is in $R\{\{X_\lambda\}\}$ and has leading monomial Y. If u is the leading coefficient of tf, then $\varphi(u) = \varphi(rt)$. Since $rt \notin M$, we have $u \notin M$. But $tf \in P$ so that $u \in A$. This contradicts the fact that A is contained in M. Therefore $\varphi(P)R_M\{\{X_\lambda\}\}$ extends to a proper ideal in $R_M\langle\{X_\lambda\}\rangle$. Since R_M is a finite dimensional Noetherian ring, $R_M\langle\{X_\lambda\}\rangle$ is Noetherian by Proposition 7. Therefore $\varphi(P)R_M\{\{X_\lambda\}\}$ is a prime ideal of finite height. Since $h(P) = h(\varphi(P)R_M\{\{X_\lambda\}\})$, this completes the proof of Theorem 9.

If σ is a nonidentity permutation on the set of positive integers, and R is a ring of dimension greater than 0, then it follows from [3, Proposition 10] that $R\{X_1, X_2, \ldots\}$ and $R\{X_{\sigma_1}, X_{\sigma_2}, \ldots\}$ are distinct subrings of the total quotient ring of $R\{\{X_\lambda\}\}$, of course, these rings are R-isomorphic under the mapping taking X_i to X_{σ_i}, and by Theorem 9, each is Noetherian if R is Noetherian. It seems natural, therefore, to consider the ring $T = \cap \{R\langle X_{\sigma_1}, X_{\sigma_2}, \ldots\|\sigma$ is a permutation on the set of positive integers), and the multiplicative system S of $R\{\{X_\lambda\}\}$ consisting of polynomials that are monic with respect to each ordering of the set of positive integers defined by a permutation σ. We proceed to show that $T = R\{\{X_\lambda\}\}_S$, and that this ring is Noetherian if R is Noetherian.

Let G_n denote the permutation group on $\{1, \ldots, n\}$, and for $\sigma \in G_n$, let N_σ denote the multiplicative system of monic polynomials in $R\{X_1, \ldots, X_n\}$ under the ordering $\sigma 1 < \sigma 2 < \cdots < \sigma n$. Thus $R\{X_1, \ldots, X_n\}_N = R\langle X_{\sigma_1}, \ldots, X_{\sigma_n}\rangle$. Note that any monomial in $X_{\sigma_1}, \ldots, X_{\sigma_n}$ is in N_σ, and if f is an element of N_σ and m is a monomial, then mf is again in N_σ. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Lemma 10. If f_{σ} is an element of N_{σ} for each σ in G_n, then there exist monomials m_{σ} in X_1, \ldots, X_n such that $f = \sum m_{\sigma} f_{\sigma}$ is in each N_{σ}. In particular, if A is an ideal of $R[X_1, \ldots, X_n]$ meeting each of the multiplicative systems N_{σ}, then A contains an element f such that f is in each N_{σ}.

Proof. We proceed by induction on n, the case $n = 1$ being immediate. Let $\sigma_i \in G_n$ be such that $\sigma_i n = i$ for $i = 1, \ldots, n$. For a fixed i, consider all t in G_n such that $t i = i$. Using the induction hypothesis that the result is true for $n - 1$, we obtain a linear combination with monomial coefficients of the f_t such that $t n = i$, say g_t, that is in every N_t for which $t n = i$. It remains to show that there exist monomials, say p_{σ_i} in X_1, \ldots, X_n such that $\sum_{i=1}^n p_{\sigma_i} g_{\sigma_i}$ is in every N_{σ_i}. We choose $p_{\sigma_i} = X_{\sigma_i}^{e_{\sigma_i}}$, where e_{σ_i} is a positive integer greater than the degree in X_{σ_i} of any g_{σ_i}. It follows that $\sum_{i=1}^n X_{\sigma_i}^{e_{\sigma_i}} g_{\sigma_i}$ is in every N_{σ_i}.

Theorem 11. Let R be a Noetherian ring and let S be the multiplicative system in $R[[X_1]]$ of polynomials that are monic with respect to each ordering of the X_i. Then $R[[X_1]] S$ is again Noetherian, and is equal to $\bigcap \{ R<X_{\sigma_1},X_{\sigma_2},\ldots > | \sigma$ is a permutation on the set of positive integers $\}.$

Proof. For each permutation σ, let S_{σ} denote the multiplicative system of polynomials of $R[[X_1]]$ that are monic with respect to the ordering $\sigma_1 < \sigma_2 < \ldots$. Then $S = \bigcap_{\sigma} S_{\sigma}$, and to show that $R[[X_1]] S$ is Noetherian, it suffices, by Theorem 5, to show that each prime ideal P of $R[[X_1]]$ that does not meet S is of finite height. If P does not meet S_{σ} for some σ, then it is clear that P is of finite height, for $R[[X_1]] S_{\sigma} = R<X_{\sigma_1},X_{\sigma_2},\ldots >$ is Noetherian by Theorem 9. Hence $PR<X_{\sigma_1},X_{\sigma_2},\ldots >$, and therefore P, is of finite height. We show that if P is a prime ideal of $R[[X_1]]$ that meets each S_{σ}, then P meets S. Consider $R[X_1, \ldots, X_n]$ and the $n!$ multiplicative systems N_{τ} of $R[X_1, \ldots, X_n]$ associated with permutations τ of $\{1, \ldots, n\}$. For each S_{σ} we have $S_{\sigma} \cap R[X_1, \ldots, X_n] = N_{\tau}$ for some τ. If P meets each of the N_{τ} on $R[X_1, \ldots, X_n]$, then, by Lemma 10, P contains an element f such that f belongs to each N_{τ}, and therefore to each S_{σ}, and hence to $S = \bigcap_{\sigma} S_{\sigma}$. But, if for each positive integer n, there is a multiplicative system N_{σ_n} on $R[X_1, \ldots, X_n]$ such that $P \cap N_{\sigma_n}$ is empty, then a standard compactness argument that the inverse limit of finite nonempty sets is nonempty yields the existence of a chain $N_{\sigma_1} \subset N_{\sigma_2} \subset \ldots$ of such sets. And $\bigcup_{\sigma=1}^{\infty} N_{\sigma_n} = S_{\sigma}$ for some σ. Hence $P \cap S$ is empty. Therefore if P does not meet S, then P does not meet S_{σ}, and we have shown that $R[[X_1]]$ is Noetherian. It is clear that $R[[X_1]] S$ is contained in $T = \bigcap R<X_{\sigma_1},X_{\sigma_2},\ldots >$. To show that T is contained in $R[[X_1]] S$, take $y \in T$, and let $A = \{ f \in R[[X_1]] | fy \in R[[X_1]] \}$. Then A is an ideal of $R[[X_1]]$, and by the definition of T it follows that A meets each S_{σ}. By Lemma 10 and the compactness argument quoted above, A meets S, and hence $y \in R[[X_1]] S$. This completes the proof of Theorem 11.

Remark 12. If Λ is any totally ordered set and $\{X_\lambda | \lambda \in \Lambda\}$ is a set of indeterminates over a Noetherian ring R, then in analogy with Theorem 11,
we can consider the group G of permutations of Λ. Each g in G induces a total order on Λ, and hence an ordering of the X_λ. Let S_g denote the multiplicative system of monic polynomials of $R[(X_\lambda)]$ with respect to the ordering defined by g. By Theorem 9, $R[(X_\lambda)]_{S_g}$ is Noetherian for each g in G. Indeed, in analogy with Theorem 11, if $S = \cap \{S_g | g \in G\}$, then $R[(X_\lambda)]_S = \cap_g R[(X_\lambda)]_{S_g}$, and this ring is again Noetherian. The proof for this result is similar to the proof given for Theorem 11, simply making use of the fact that $R[(X_\lambda)]$ is the direct union of the polynomial rings over R in a finite number of the X_λ, and the fact that any finite totally ordered set of cardinality n has the same order structure as the natural order on the set of positive integers $< n$.

We note that for R Noetherian, it follows from Theorem 5 that, in general, a quotient ring $R[(X_\lambda)]_S$ is Noetherian if $R[Y]_{S \cap R[Y]}$ is Noetherian for each countably infinite subset Y of $\{X_\lambda\}$.

References

Department of Mathematics, Florida State University, Tallahassee, Florida 32306
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907