A REMARK ON SCHUR INDICES OF p-GROUPS

TOSHIHIKO YAMADA

Abstract. By making use of Hasse's sum theorem, a simple proof of the following theorem on Schur indices of p-groups is given.

Theorem (Roquette [3] and Solomon [4]). Let p be a prime number, G a p-group, and χ an irreducible complex character of G. Let $m_Q(\chi)$ denote the Schur index of χ over the rational field Q. Then, $m_Q(\chi) = 1$ for $p \neq 2$, and $m_Q(\chi) = 1$ or 2 for $p = 2$.

Proof. Let A be the simple component of the group algebra $Q[G]$, which corresponds to χ. The center of A is $Q(\chi)$, the extension field of Q generated by the elements $\{\chi(g); g \in G\}$. Put $k = Q(\chi)$. Let q be a rational prime (possibly the infinite prime ∞) and q a prime of k, lying above q. Let $\text{inv}_q(\chi)$ denote the Hasse invariant of A at q. It is well known that if $q \neq p, \infty$, then $\text{inv}_q(\chi) \equiv 0 \pmod{1}$, i.e., the Schur index $m_Q(\chi) = 1$, Q_q being the q-adic numbers. (A result which may be established by means of modular representation theory for the prime $q \mid |G|$.)

Let $|G| = p^n$ and ζ a primitive p^nth root of unity. Then $k = Q(\chi) \subset Q(\xi)$. Hence there is only one prime ν of k lying above p (cf. Theorem 1 of [2, p. 73]). Let $\nu_{0,1}, \ldots, \nu_{\infty,n}$ be the infinite primes of k. Hasse's sum theorem (Satz 9, p. 119 of [1]) now yields that

$$\sum_{i=1}^{s} \text{inv}_{\nu_{i,1}}(\chi) + 2 \text{inv}_{\nu_{\infty,n}}(\chi) \equiv 0 \pmod{1}.$$

Since $\text{inv}_{\nu_{\infty,n}}(\chi) \equiv 0$ or $\frac{1}{2}$, it follows that $\sum_{i=1}^{s} \text{inv}_{\nu_{i,1}}(\chi) \equiv 0$ or $\frac{1}{2}$ (mod 1), and consequently $\text{inv}_{\nu}(\chi) \equiv 0$ or $\frac{1}{2}$ (mod 1). This implies that $m_Q(\chi) = 1$ or 2. Since $m_Q(\chi) \mid p^n$, then $m_Q(\chi) = 1$ for $p \neq 2$.

References

Department of Mathematics, Tokyo Metropolitan University, Fukazawa, Setagaya, Tokyo 158, Japan

Received by the editors September 21, 1977.

AMS (MOS) subject classifications (1970). Primary 20C15; Secondary 20C05.

© 1979 American Mathematical Society 0002-9939/79/0000-0361/$01.25