Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hille-Wintner type comparison theorems for second-order ordinary differential equations


Author: G. J. Butler
Journal: Proc. Amer. Math. Soc. 76 (1979), 51-59
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9939-1979-0534390-5
MathSciNet review: 534390
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Apart from the Sturm theorem, some of the most useful comparison theorems in second-order ordinary linear differential equations are the Taam-Hille-Wintner theorems. In this note we obtain an extension of these theorems to more general nonlinear equations and incidentially settle an open question for the linear case.


References [Enhancements On Off] (What's this?)

  • [1] S. Breuer and D. Gottlieb, Hille-Wintner type oscillation criteria for linear ordinary differential equations of second order, Ann. Polon. Math. 30 (1975), 257-262. MR 0379978 (52:882)
  • [2] G. J. Butler, On the oscillatory behavior of a second order nonlinear differential equation, Ann. Mat. Pura Appl. (4) 105 (1975), 73-92. MR 0425252 (54:13209)
  • [3] W. J. Coles, Oscillation criteria for nonlinear second order equations, Ann. Mat. Pura Appl. 82 (1969), 123-134. MR 0255907 (41:567)
  • [4] P. Hartman, Ordinary differential equations, S. M. Hartman, Baltimore, 1973. MR 0344555 (49:9294)
  • [5] E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234-252. MR 0027925 (10:376c)
  • [6] A. Ju. Levin, A comparison principle for second order differential equations, Soviet Math. Dokl. 1 (1961), 1313-1316. MR 0124563 (23:A1875)
  • [7] R. A. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math. 5 (1955), 125-145. MR 0068690 (16:925b)
  • [8] K. Schrader, Oscillation and comparison for second order differential equations, Proc. Amer. Math. Soc. 51 (1975), 131-136. MR 0372336 (51:8552)
  • [9] C. A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968. MR 0463570 (57:3515)
  • [10] C. T. Taam, Non-oscillatory differential equations, Duke Math. J. 19 (1952), 493-497. MR 0051994 (14:557d)
  • [11] A. Wintner, On the comparison theorem of Kneser-Hille, Math. Scand. 5 (1957), 255-260. MR 0096867 (20:3349)
  • [12] J. S. W. Wong, On second order nonlinear oscillation, Funkcial. Ekvac. 11 (1968), 207-234. MR 0245915 (39:7221)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0534390-5
Keywords: Oscillation, nonlinear, comparison
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society