Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An approximation of integrable functions by step functions with an application


Authors: M. G. Crandall and A. Pazy
Journal: Proc. Amer. Math. Soc. 76 (1979), 74-80
MSC: Primary 41A30
DOI: https://doi.org/10.1090/S0002-9939-1979-0534393-0
MathSciNet review: 534393
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f \in {L^1}(0,\infty ),\delta > 0$ and $ ({G_\delta }f)(t) = {\delta ^{ - 1}}\smallint _t^\infty {e^{(t - s)/\delta }}f(s)ds$. Given a partition $ P = \{ 0 = {t_0} < {t_1} < \cdots < {t_i} < {t_{i + 1}} < \cdots \} $ of $ [0,\infty )$ where $ {t_i} \to \infty $, we approximate f by the step function $ {A_P}f$ defined by

$\displaystyle {A_P}f(t) = ({G_{{\delta _i}}}{G_{{\delta _{i - 1}}}} \cdots {G_{{\delta _i}}}f)(0)\quad {\text{for}}\;{t_{i - 1}} \leqslant t < {t_i},$

where $ {\delta _i} = {t_i} - {t_{i - 1}}$. The main results concern several properties of this process, with the most important one being that $ {A_P}f \to f$ in $ {L^1}(0,\infty )$ as $ \mu (P) = {\sup _i}{\delta _i} \to 0$. An application to difference approximations of evolution problems is sketched.

References [Enhancements On Off] (What's this?)

  • [1] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leiden, 1976. MR 0390843 (52:11666)
  • [2] M. G. Crandall, An introduction to evolution governed by accretive operators, Dynamical Systems: An International Symposium, Vol. 1, Academic Press, New York, 1976, pp. 131-165. MR 0636953 (58:30550)
  • [3] M. G. Crandall and L. C. Evans, On the relation of the operator $ \partial /\partial s + \partial /\partial \tau $ to evolution governed by accretive operators, Israel J. Math. 21 (1975), 261-278. MR 0390853 (52:11676)
  • [4] C. M. Dafermos and M. Slemrod, Asymptotic behaviour of nonlinear contraction semigroups, J. Functional Analysis 13 (1973), 97-106. MR 0346611 (49:11336)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A30

Retrieve articles in all journals with MSC: 41A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0534393-0
Keywords: Step functions, approximation theory, accretive operators
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society