NEAR-DERIVATIONS AND
INFORMATION FUNCTIONS

JOHN LAWRENCE², GEOFF MESS AND FRANK ZORZITTO³

Abstract. Near-derivations γ satisfy the conditions

\[\gamma(xy) = xy(\gamma(y) + y\gamma(x)) \]

for $x, y \in \mathbb{R}$, $\gamma(x + y) > \gamma(x) + \gamma(y)$ for $x, y > 0$, $\gamma(x) = 0$ for $x \in \mathbb{Q}$. Existence of near-derivations other than derivations is tied in with that of nonnegative information functions and an example of Daróczy and Maksa. Conditions for near-derivations to be derivations are discussed.

1. Introduction. A near-derivation is a self-mapping γ of the reals \mathbb{R} such that:

\[\gamma(xy) = xy(\gamma(y) + y\gamma(x)) \quad \text{for all } x, y \in \mathbb{R}, \tag{1} \]
\[\gamma(x + y) > \gamma(x) + \gamma(y) \quad \text{for all } x, y > 0, \tag{2} \]
\[\gamma(x) = 0 \quad \text{for all rational } x. \tag{3} \]

The question immediately arises as to whether there are any near-derivations that are not already derivations.

An information function is a mapping $f : [0, 1] \to \mathbb{R}$ satisfying the equation

\[f(x) + (1 - x)f(y/ (1 - x)) = f(y) + (1 - y)f(x/ (1 - y)), \]

and the normalizing conditions

\[f(0) = f(1) = 0, \quad f\left(\frac{1}{2}\right) = 1. \]

The most important example of an information function is the Shannon function s given by

\[s(x) = -x \log x - (1 - x)\log(1 - x) \quad \text{for } 0 < x < 1. \]

(Here and throughout we adopt the conventions that $\log = \log_2$ and $0 \log 0 = 0$.) The motivation for the above definition of an information function is developed by Aczél and Daróczy in [1], where such functions are studied extensively as part of an analysis of measures of information.

The present research was motivated by a problem cited in [1]. Namely, is the Shannon function s the only nonnegative information function? This was recently solved by Daróczy and Maksa [2]. They showed that for any

Received by the editors October 2, 1978.

¹This research was carried out partly in the NRC Summer Research workshops held at the University of Waterloo in 1978.

²Research supported by NRC grant A4540 and University of Waterloo research grant 131-7052.

³Research supported by NRC grant A4655 and University of Waterloo research grant 131-7067.

© 1979 American Mathematical Society

0002-9939/79/0000-0373/502.50

117
derivation δ on R, the formula

$$f(x) = s(x) + \delta(x)^2 / x(1-x)$$

provides a nonnegative information function. In our paper we show that f is a nonnegative information function if and only if

$$f(x) = s(x) - \gamma(x) - \gamma(1-x),$$

where γ is a near-derivation. It follows from this that s is the minimal nonnegative information function. The latter fact is also proved in [2] by a different approach. In addition the Daróczy-Maksa example leads to examples of near-derivations which are not derivations. We conclude with some properties of near-derivations.

2. Connection of near-derivations to information functions. A theorem in [1] leads to the connection between information functions and near-derivations.

Representation Theorem (Aczél-Daróczy). A function $f: [0, 1] \to R$ is an information function if and only if there is a self-mapping δ of R such that

$$f(x) = -\delta(x) - \delta(1-x) \quad \text{for all } x \in [0, 1], \quad (4)$$
$$\delta(xy) = x\delta(y) + y\delta(x) \quad \text{for all } x,y \in R, \quad (5)$$
$$\delta(2) = 2. \quad (6)$$

In addition it can be readily checked that f is nonnegative if and only if the representing function δ satisfies

$$\delta(x + y) \geq \delta(x) + \delta(y) \quad \text{for all } x,y > 0. \quad (7)$$

Our first result is a refinement of the representation theorem for nonnegative f.

Theorem 1. A function $f: [0, 1] \to R$ is a nonnegative information function if and only if

$$f(x) = s(x) - \gamma(x) - \gamma(1-x), \quad (8)$$

where γ is a near-derivation.

Proof. Let γ be a near-derivation. Let $\sigma: R \to R$ be defined by $\sigma(x) = x \log|x|$, and let $\delta = \sigma + \gamma$. Clearly σ satisfies conditions (5)–(7). Since γ is a near-derivation, δ satisfies (5)–(7) also. By the representation theorem, the formula $f(x) = -\delta(x) - \delta(1-x), 0 < x < 1$, provides a nonnegative information function f.

Conversely, let f be a nonnegative information function. By the representation theorem let $\delta: R \to R$ satisfy (4)–(7) for f. Let $\sigma(x) = x \log|x|$ as before, and let $\gamma = \delta - \sigma$. We shall prove γ is a near-derivation. It will then follow that

$$f(x) = -(\sigma + \gamma)(x) - (\sigma + \gamma)(1-x) = s(x) - \gamma(x) - \gamma(1-x)$$

as desired.
Now, property (1) of near-derivations holds for γ because δ and σ have it. Property (3) for γ follows from [3, Theorem 2], where it is shown that $\delta = \sigma$ on the rationals. Thus property (2) remains, namely that
\[
\delta(x + y) - (x + y)\log(x + y) > (\delta(x) - x \log x) + (\delta(y) - y \log y)
\] (9)
for all $x, y > 0$. This inequality will follow from the subsequent lemmas.

Lemma 2. Suppose $\delta: \mathbb{R} \to \mathbb{R}$ satisfies conditions (5)-(7). Then
\[
\delta(1 + x) > (1 + x)\log(1 + x) + \delta(x) - x \log x
\]
for any $x > 0$.

Proof. For any positive integer n and $x > 0$ we apply (5) and (7) to get
\[
n(1 + x)^{n-1}\delta(1 + x) = \delta((1 + x)^n) = \delta\left(\sum_{k=0}^{n} \binom{n}{k} x^k\right) > \sum_{k=0}^{n} \delta\left(\binom{n}{k} x^k\right).
\]
Thus
\[
\delta(1 + x) > \frac{1}{n(1 + x)^{n-1}} \sum_{k=0}^{n} \binom{n}{k} \delta(x^k) + x^k \delta\left(\binom{n}{k}\right).
\]
In [3] it is proved that $\delta(r) = r \log r$ for any positive rational r. Hence
\[
\delta(1 + x) > \frac{1}{n(1 + x)^{n-1}} \sum_{k=0}^{n} \binom{n}{k} x^k \left(\delta(x^k) + x^k \delta\left(\binom{n}{k}\right) \right) + \frac{1}{n(1 + x)^{n-1}} \sum_{k=0}^{n} x^k \binom{n}{k} \log\left(\binom{n}{k}\right)
\]
\[
= \delta(x) + \frac{1 + x}{n} \sum_{k=0}^{n} \binom{n}{k} \frac{x^k}{(1 + x)^n} \log\left(\binom{n}{k}\right)
\]
\[
= \delta(x) + a_n - b_n + c_n,
\]
where
\[
a_n = \frac{1 + x}{n} \sum_{k=0}^{n} \binom{n}{k} \frac{x^k}{(1 + x)^n} \log\left(\binom{n}{k} \cdot \frac{x^k}{(1 + x)^n}\right),
\]
\[
b_n = \frac{1 + x}{n} \sum_{k=0}^{n} \binom{n}{k} \frac{x^k}{(1 + x)^n} \log(x^k) = x \log x,
\]
\[
c_n = \frac{1 + x}{n} \sum_{k=0}^{n} \binom{n}{k} \frac{x^k}{(1 + x)^n} \log((1 + x)^n) = (1 + x) \log(1 + x).
\]
Since
\[
\sum_{k=0}^{n} \binom{n}{k} \frac{x^k}{(1 + x)^n} = 1
\]
it follows from [1, Theorem 1.3.7] that
\[|a_n| \leq \frac{1 + x}{n} \log(n + 1). \]
Thus \(a_n \to 0 \) as \(n \to \infty \). We therefore get in the limit
\[\delta(1 + x) > \delta(x) - x \log x + (1 + x) \log(1 + x). \]

Lemma 3. For \(\delta \) satisfying (5)--(7) and any \(x, y > 0 \), inequality (9) must hold.

Proof. By using property (5) and Lemma 2 we get
\[
\delta(x + y) = \delta(x(1 + y/x)) = x\delta(1 + y/x) + (1 + y/x)\delta(x)
\geq x((1 + y/x)\log(1 + y/x)) + \delta(y/x)
\]
\[
- (y/x) \log(y/x) + (1 + y/x)\delta(x).
\]
Use of (5) to expand \(\delta(y/x) \) and some logarithmic properties reduces the latter expression to
\[
(x + y) \log(x + y) + \delta(x) - x \log x + \delta(y) - y \log y,
\]
whence (9) follows.

Theorem 4. If \(f \) is any nonnegative information function and \(s \) is the Shannon function, then \(f \geq s \).

Proof. Let \(\delta \) represent \(f \) according to the representation theorem. By Lemma 3, inequality (9) holds for \(\delta \). With \(0 < x < 1 \) and \(y = 1 - x \), (9) specializes to
\[
\delta(x) + \delta(1 - x) \leq x \log x + (1 - x) \log(1 - x),
\]
which says that \(f \geq s \).

Theorem 5. Not all near-derivations must be derivations.

Proof. Formula (8) yields an example of such near-derivations for every nonnegative information function \(f \) different from \(s \).

3. **Some properties of near-derivations.** We are interested in conditions for the additivity of near-derivations. For example, it can be seen from [3] that if \(F, K \) are fields of real numbers and \(K \) is quadratic over \(F \) and \(\gamma \) is a near-derivation vanishing on \(F \), then \(\gamma \) is additive on \(K \). By Theorem 5 this need not happen if \(K \) is not algebraic over \(F \). If, for a transcendental \(x \), a near-derivation \(\gamma \) vanishing on \(F \) were linear on the field \(F(x) \), then \(\gamma \) would be constant on the coset \(x + F \). We are therefore led to examine \(\gamma \) restricted to \(x + F \).

Theorem 6. Let \(F \) be a real field, \(x \) a real number and \(\gamma \) a near-derivation vanishing on \(F \). Then for \(a, b \) in \(F \):

(a) \(0 < x + a < x + b \) implies that \(\gamma(x + a) < \gamma(x + b) \);
(b) \(x + a < x + b < 0 \) implies that \(\gamma(x + a) < \gamma(x + b) \);
(c) \(x + a < 0 < x + b \) implies that \(\gamma(x + b) < \gamma(x + a) \);
(d) \(\gamma(x + a) \) and \(\gamma(x - a) \) converge to the same finite value as \(a \) tends to \(+\infty \) inside \(F \).

Proof. To prove (a) we use (2) and the vanishing of \(\gamma \) on \(F \). This yields:

\[
\gamma(x + b) = \gamma(x + a + b - a) > \gamma(x + a) + \gamma(b - a) = \gamma(x + a).
\]

Items (b) and (c) similarly use (2) and the fact that \(\gamma = 0 \) on \(F \), plus that near-derivations are odd functions. The existence of the finite limits

\[
\beta_l(x) = \lim_{a \to +\infty} \gamma(x - a), \quad \beta_r(x) = \lim_{a \to +\infty} \gamma(x + a)
\]

follows from the monotonicity conditions (a) and (b), and the bounding condition (c). It also follows from (c) that \(\beta_r(x) < \beta_l(x) \).

To get equality for \(\beta_r \) and \(\beta_l \) consider the finite quantity \(\beta_l(x^2) \) and apply (1).

\[
\beta_l(x^2) = \lim_{a \to +\infty} \gamma(x^2 - a) = \lim_{a \to +\infty} \gamma(x^2 - a^2)
\]

\[
= \lim_{a \to +\infty} ((x + a)\gamma(x - a) + (x - a)\gamma(x + a))
\]

\[
= x\beta_l(x) + x\beta_r(x) + \lim_{a \to +\infty} a(\gamma(x - a) - \gamma(x + a)).
\]

The limit of \(a(\gamma(x - a) - \gamma(x + a)) \) is now finite. This means \(\gamma(x - a) - \gamma(x + a) \) tends to 0, and hence \(\beta_l(x) = \beta_r(x) \).

The next result gives a condition for our \(\gamma \) to be a derivation.

Theorem 7. Let \(\gamma \) be a near-derivation, and let the function \(\beta \) be defined by \(\beta(x) = \lim_{a \to +\infty} \gamma(x + a), \) \(x \) real. Then \(\beta \) is \(Q \)-linear, and, for all real \(x \), \(\beta(x^2) > 2x\beta(x) \). Furthermore, \(\beta \) is a derivation if and only if \(\beta = \gamma \).

Proof. The superadditivity (2) of \(\gamma \) implies the same for \(\beta \) as follows:

\[
\beta(x + y) = \lim_{a \to +\infty} \gamma(x + y + a) = \lim_{a \to +\infty} \gamma(x + a/2 + y + a/2)
\]

\[
> \lim_{a \to +\infty} \gamma(x + a/2) + \lim_{a \to +\infty} \gamma(y + a/2) = \beta(x) + \beta(y).
\]

The subadditivity of \(\beta \) comes from the equality of \(\beta \) and \(\beta_l \) in Theorem 6(d), and the fact that, for \(u > v > 0 \), \(\gamma(u - v) < \gamma(u) + \gamma(-v) \). Indeed,

\[
\beta(x + y) = \lim_{a \to +\infty} \gamma((x + 2a) - (-y + a))
\]

\[
< \lim_{a \to +\infty} \gamma(x + 2a) + \lim_{a \to +\infty} \gamma(y - a) = \beta(x) + \beta(y).
\]

Next, for \(x \) real use the equality in the proof of Theorem 6(d) to obtain:

\[
\beta(x^2) = 2x\beta(x) + \lim_{a \to +\infty} a(\gamma(x - a) - \gamma(x + a)). \tag{10}
\]
Theorem 6(c) implies that $\gamma(x - a) > \gamma(x + a)$ when a is large. Thus $\beta(x^2) > 2x\beta(x)$.

Now if $\beta = \gamma$, then both are derivations because β is additive and γ satisfies (1). Conversely suppose β is a derivation. The difference $\gamma_1 = \gamma - \beta$ is then a near-derivation for which Theorem 6 applies. In particular, for any $x > 0$, $\gamma_1(x + a)$ increases to a finite value $\beta_1(x)$ as $a \to +\infty$ through the rationals. By the definition of γ_1 it follows that $\beta_1(x) = 0$. Thus $\gamma_1(x) < 0$ for all $x > 0$. However, one can check that any function satisfying (1) and (3) must have a dense graph in R^2 or else vanish everywhere. We must conclude that $\gamma_1 = 0$, or $\beta = \gamma$.

A corollary of Theorem 7 seems worth noting.

Theorem 8. A near-derivation γ is a derivation if and only if, for all x, $a(\gamma(x - a) - \gamma(x + a)) \to 0$ as $a \to +\infty$ through the rationals.

Proof. By formula (10), $\beta(x^2) = 2x\beta(x)$. This makes β a derivation, and hence γ.

References

2. Z. Daróczy and Gy. Maksa, Nonnegative information functions (to appear).

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA N2L 3G1